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Distributed and Parallel ADMM for Structured
Nonconvex Optimization Problem

Xiangfeng Wang ~, Junchi Yan

Abstract—The nonconvex optimization problems have recently
attracted significant attention. However, both efficient algorithm
and solid theory are still very limited. The difficulty is even pro-
nounced for structured large-scale problems in many real-world
applications. This article proposes an application-driven algorith-
mic framework for structured nonconvex optimization problems
with distributed and parallel techniques, which jointly handles
the high dimensionality of model parameters and distributed
training data. The theoretical convergence of our algorithm is
established under moderate assumptions. We apply the proposed
method to popular multitask applications, including a multi-
task reinforcement learning problem. The promising performance
demonstrates our framework is effective and efficient.

Index Terms—Distributed, large-scale optimization, multitask
reinforcement learning, nonconvex optimization, parallel.

I. INTRODUCTION AND RELATED WORK

IN THIS article, we consider the following nonconvex
optimization problem, that is:

min
{x;cR"i

| 2SO B Xn) )
i=1

8(X1,..sXm)

where f; : R — R is assumed smooth, but can be nonconvex
and Lipschitz differentiable with gradient Lipschitz constant
L;; and h is a Lipschitz continuous function (possibly noncon-
vex and nonsmooth) with respect to all variables {xi, ..., X, }.
To motivate our work, we first present some discussion on
machine-learning applications based on (1).
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A. Motivating Application: Multitask Learning

Many machine-learning applications can be incorporated
into this general formulation (1), e.g., the multitask learn-
ing (MTL) problem. MTL aims to jointly learn a batch of
tasks, which allows information to be transferred throughout
related tasks, in contrast to learning each task separately. MTL
has been widely applied in a variety of applications, such as
survival analysis [1], subspace segmentation [2], fine-grained
visual categorization [3], and fMRI analysis [4].

Ideally, when all tasks in question share common structures,
direct joint MTL can be conducted in an outlier task agnostic
way. There exist effective algorithms by introducing penalty
terms, e.g., group lasso or nuclear norm [5], [6]. However,
in real-world problems, the hidden relationship among tasks
can be very complicated. Usually, a majority of tasks can be
clustered into natural groups with shared commonality, while
there might be still a few tasks hardly relevant to the major
groups and treated as an outlier. Accordingly, two concepts,
that is, task grouping and task outlier, outlier task detection
is introduced to address the challenge, and are often jointly
performed with task grouping.

Assuming that we are given m distributed tasks with the
training data {A;,y;}7,, A; € R™>" and y; € R™ denote
the data matrix and the supervision (label) of the ith task.
Each row of A; represents a sample with dimension n, and
m; denotes the number of samples of the ith task. For the
machine-learning problems, we usually consider learning the
mapping g; for each task: g;(A;, x;) — y;, where x; € R"
denotes the model parameter vector for task i. Define target
weight matrix X as a stack of all parameter vectors of the m
tasks: X = [x1,X2, ..., %)Y € R™" In general, there are
two types of MTL loss functions.

In the Absence of Outlier Task: Assuming that all tasks have
common relationship, we consider the following model:

m
min (X)) +yh(X 2
ni ;f,( D +yhX) )
- Penalty

Empirical loss

where fi(x;) £ £(gi(A;, X;)) is the empirical loss function with
respect to the ith task, and £(-) is a basic loss function. For
the reason that the mapping g; could both be linear and non-
linear, the empirical loss function of each task f; can be linear
regression, logistic regression, and even the loss function of
deep learning. Thus, f; could be convex or nonconvex. £ is
considered as the penalty function, which, in fact, encodes the
relationship among tasks. For some popular convex functions,
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such as the group-lasso penalty [5], [7] and the nuclear-norm
penalty [6], [8], & can be nonconvex, while it is often carefully
designed with some special properties, e.g., smoothly clipped
absolute deviation (SCAD) or minimax concave plus (MCP)
penalty [9]-[11].

In the Presence of Outlier Task: Assume that some of the
tasks are outliers, that is, they do not belong to any task group.
To achieve related tasks grouping and outlier task detection,
one generalized loss is given by [12]

(i Y filsi &)+ yshi(8) + yeha (L)
st =1

Penalty
Empirical loss
T T
st. S=1[s1,....sml", L=[€1,...,4y] €))

where the model parameter x; is separated into two terms s;
and £;. The empirical loss of each task f;(s;, £;) has the same
assumptions as the case above. There are two separate penalty
terms /1 and &, which are often used to describe the cross-task
structure for task grouping and outlier task detection, respec-
tively. For instance, in [13], &1 (S) is set to be ||S||. for coupling
the related tasks, while Ay (L) is designed to be ||L||; 2 for
identifying the outlier tasks. In [14], a robust MTL formula-
tion is presented with /1 (S) = ||S|l1,2 and Ay(L) = ||LT||1,2,
where the first group-lasso penalty encourages all related tasks
to share a common set of features, and the second group-lasso
penalty introduces all zero or nonzero columns of L with the
nonzero columns corresponding to outlier tasks. Meanwhile,
the nonconvex SCAD-type penalty and MCP-type penalty also
can be introduced to describe the specific necessary problem
structure [9].

Both problems (2) and (3) can be incorporated in the general
problem (1). In the following text, we focus on this gen-
eral optimization problem (1) and check the efficiency of this
article from both an algorithmic and theoretical perspective
through some MTL application problems.

B. Related Work

Problem (1) can be considered as a special case of a more
general optimization problem, that is

min f(x) + h(x) 4)
xeR”

where f is assumed to be Lipschitz differentiable (possibly
nonconvex) and 4 is assumed to be a Lipschitz continuous
(possibly nonconvex and nonsmooth). It is obvious that f(x)
has a separable structure for the specific problem (1). Various
data fitting problems in machine learning, signal processing,
and statistics can be formulated as problem (4), where f is
a loss function measuring the deviation of a solution from
the observations and /4 is a regularizer intended to induce a
certain structure in the solution. With the advent of big data
era, the problem instances are typically large scale, and the
first-order methods are popularly used to solve problem (4) in
recent years, such as the proximal gradient (PG) method, block
coordinate descent-type (BCD-type) methods, and extended
accelerated variants.
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In general, when f and & are both convex functions,
the O(1/k) convergence of most first-order methods can
be obtained, with respect to the objective function value
sequence converge to the optimal value [15]. Recently, the
fast iterative shrinkage-thresholding algorithm (FISTA) was
proposed in [16] based on Nesterov’s extrapolation tech-
niques [17] and accelerates the PG method to the O(1/k?)
convergence rate. Moreover, the objective functions often have
an explicit form or specific structure in plenty of applica-
tions. We can observe that the numerical performance of many
first-order methods reflects significantly better than that sug-
gested by theory. The structure of the problem can benefit
the algorithm to obtain a sharper convergence curve. In other
words, more assumptions of problem structures are needed,
and should be well employed to guarantee a better conver-
gence rate of the PG method. Schmidt et al. [18] proved a
global linear convergence rate with respect to the objective
function value sequence with f strongly convex and & con-
vex assumptions. More recently, Tao er al. [19] established
the local linear convergence of the PG algorithm, and FISTA
applied to the specific LASSO problem, by using f as is a least
squares loss function and % as || - ||, where T > 0.

Under the nonconvex setting, recently, the convergence rate
analysis of many first-order methods also gains popularity.
Attouch et al. [20] claimed that under the assumption that
the objective function f admits the Kurdyka—Lojasiewicz (KL)
property, a bounded sequence can be guaranteed iteratively,
as long as one can ensure the sufficient decrease property
through the algorithm (this property is obviously valid for con-
vex case, however, for nonconvex, extra assumptions must be
added). Shortly thereafter, Bolte et al. [21] introduced a proxi-
mal alternating linearized minimization (PALM) algorithm. In
particular, they derived a self-contained convergence analysis
framework building on the powerful KL property. On the other
hand, the so-called iPiano algorithm was presented in [22].
Specifically, they focused on the case where f is smooth (pos-
sibly nonconvex) and 4 is convex (possibly nonsmooth). Based
on the KL property, Ochs et al. [22] revealed that any accumu-
lation point of the sequence generated by iPiano is a critical
point. Moreover, the objective function value converges, and
the iPiano converges in a sublinear rate. Xu and Yin [23]
proposed a BCD-type algorithm for nonconvex optimization
and established its global convergence (of the entire sequence)
to a critical point based on the KL property. In [9] and [24],
a general iterative shrinkage and thresholding algorithm was
proposed for the nonconvex regularized optimization problems
in the form of (4). Another iteratively reweighted nuclear-norm
algorithm was given in [10] to solve a nonconvex nonsmooth
low-rank minimization problem, which is also in the form
of (4).

C. Main Contributions

However, all of these algorithms are designed for the general
problem (4), and have not yet taken advantage of the special
structure of (1). Moreover, the separable structure of function f
can benefit more for distributed and parallel computing, espe-
cially for large-scale problems. Each “task” belongs to each
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agent and may be distributed deployed which significantly
drive the distributed computing. Both the extremely growing
problem dimension scale and data volume push us to introduce
distributed and parallel computing. Further, formulation (1) has
separable structure with different smooth task-driven functions
for difference agents, however, the regularization term is com-
bined together. All of these reasons motivate us to design some
novel efficient algorithms for problem (1) based on the dis-
tributed and parallel computing techniques. Therefore, we will
propose a new distributed and parallel algorithm framework
to handle the nonconvexity and specific structure of (1). The
main contributions of this article are as follows.

1) We devise a new algorithm framework for the general
nonconvex optimization problem (1), which takes full
advantage of the separable structure of (1).

2) We establish the theoretical analysis for the conver-
gence of our algorithm framework under rather moderate
assumptions. This is novel in the literature, because the
ADMM-type methods on the nonconvex optimization
problems are still limited. Our new convergence results
can reinforce the understanding of ADMM for the non-
convex problems. To the best of our knowledge, this is
the first convergence analysis result of the ADMM-type
method when both f; and /4 are nonconvex.

3) As shown in the experiment, our framework can incor-
porate existing MTL formulations either in the presence
of outlier tasks or not, and can routinely adapt them to
the parallel and distributed computing setting.

The remainder of this article is organized as follows.
Section II introduces the distributed and parallel algorithm
framework, and more further discussions followed by a the-
oretical analysis in Section III. The experimental results on
MTL applications are reported in Section IV, and Section V
concludes this article.

Notations: Before we go into the details, some notations are
defined first. Scalars, vectors, matrices, and sets are denoted
by lower case letters, boldface lower case letters, boldface
capital letters, and calligraphic capital letters, respectively.
x; and ¥ denote the ith entry and the jth block of a vec-
tor x, while x;; denotes the (i, j)th entry of a matrix X. || - ||
and || - |2 denote the £1-norm and £;-norm of a vector. || - ||«
and || - || denote the nuclear norm and Frobenius norm
of a matrix, further £, ,-norm of a matrix X is defined as

X llp.q = (32, IS xp Py P

II. PROPOSED ALGORITHM FRAMEWORK

First, we reformulate (1) to the following linear constrained
separable minimization problem:

min
{x;eR"i z;eR"i}

D ) +hzi . 2)
i=1

s.t. X, =2z,i=1,....m (®)]

where {z;}!" | are introduced as the auxiliary variables, and
help decouple f;(-) and A(-) to allow f; to be computed in
a distributed way. This is often a preferred or must have
characteristic in many real-world scenarios, e.g., for privacy
preservation.
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We define the augmented Lagrangian function as

L(X;,2;, X;) = Zfi(xi) +h(zy, ..., Zy)

-

l m m ,3

—~ 20»,-, X; — ;) + Zl Elnxi —zl> (6)
= =

where {A;}7" | are the Lagrangian multipliers, and {§;}" | are
the weights for the linear constraint violation penalties. A pop-
ular algorithm, so called the alternating direction method of
multipliers (ADMM) [25], is usually considered to solve (5),
whose steps in iteration k+1 are given as follows:

(zII‘H, o zlan) = argmin A(zi, ..., Zn)
2
m k
Bi kA
+ —lzi— | x; — — (7a)
2o
2
xi‘“ = arg minf;(x;) + % X; — zi-“H - F’ (7b)
l
M=k = (X - A, (7¢)

Note that the above algorithm has the exact form as the clas-
sical ADMM, where the variables {z;}7", are taken as the
first block of primal variable, and the collection {x;}7*, as
the second block. The two primal blocks are updated in a
sequential manner, followed by an inexact dual ascent step
({Ai}). The ADMM was originally proposed in [26] for nonlin-
ear elliptic equations, and it recently has found a wide range
of applications in various areas, such as image processing,
statistical learning, computer vision, wireless communication
networks, and so on. It becomes a benchmark first-order solver
for the convex minimization models with separable objec-
tive functions, and is being extensively explored in other
various contexts, such as the nonconvex or multiblock con-
texts. We refer to [25] and [27] for a more comprehensive
treatment of ADMM. Unlike the convex case, for which the
behavior of ADMM has been investigated quite extensively,
when the objective becomes nonconvex, the convergence
issue of ADMM remains largely open. Interestingly, it has
been observed by many researchers that the ADMM works
empirically extremely well for various applications involving
nonconvex objectives [28]-[30]. However, to the best of our
knowledge, existing convergence analysis of ADMM for the
nonconvex problems is very limited, and all known global
convergence analysis needs to impose uncheckable condi-
tions on the sequence generated by the algorithm. Recently,
Hong et al. [31] established the convergence of the ADMM
for certain types of nonconvex problems, including the con-
sensus and sharing problems without any assumption on the
iterations. Problem (5) has a similar structure with the refor-
mulation of the consensus problem. However, the consensus
problem only contains a function i about a consensus vari-
able x with all x; = x constraint, which can be considered as
a special case of (5).

Before proposing our algorithm framework, we give some
assumptions and computing techniques, in order to consider a
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Algorithm 1 Distributed and Parallel ADMM

Initialization 1. Set parameters {8; > 0}, zero {x?}, {X?}.
Procedure 2. Calculate step (a)-(c) until converge.

(a) At iteration k+1, pick an index set C ‘H,

(b) If 0 € Ck*1 compute:

(ZIIC+1’ ) Zl:n+1) = argmin h(217 e 7zm)
m k 2
Bil|l P A
—|—; > Z; X; 5,
i=1
Else zf""l = z{?;
(©) If i € CK*1 and i # 0, compute
2
A
Xt = argminfy(x;) + = 5 xi—zi T =L ()

Update the related dual variable
Xig+1 ,81< k+1 k+1>’ (10)

Else xi.‘"H = Xf and lff+] = X;‘. k=k+1;

more flexible algorithm in choosing the order of the update of
both the primal and the dual variables. Let t = 0 be the index
for the primal variable (z1,...,%,), let t = 1,...,m be the
indices for the primal variable blocks X1, . .., X;,, respectively,
and let Ck c {0, 1, ..., m} denote the set of variables updated
in iteration k. We define a period-T essentially cyclic update
rule (essentially cyclic update rule) [32]: there exists a given
period T > 1, during which each index is updated at least
once. More specifically, at iteration k, update all the variables
in an index set C* whereby

T
e =10.1.....m}, ve. (8)

This rule is commonly used and has a very wide range of
accommodation. The scheme to determine the index set C*
in each iteration can be either deterministic (determine the
sequence {C¥} beforehand) or randomized (each variable is
chosen randomly with probability in CX).

We propose our algorithm framework for (5) in the spirit of
ADMM, and the main algorithmic pipeline is depicted in the
following algorithm. This algorithm framework is a standard
ADMM-type algorithm, and is similar to the one proposed
in [31], except that their algorithm is focused on the consensus
problem which can be considered as a special case of (5).
Moreover, they only consider the case that & is assumed to
be a convex function. In contrast, our algorithm can deal with
both nonconvex functions f and A.

In the following text, we give some concrete discussions
on the algorithm framework below, especially for efficient
implementation.

1) Distributed (Privacy Preserving) Computing: Our algo-
rithm framework is built on a network of star topology,
where there is a master node to handle the computa-
tion involving the function h. All other distributed task
nodes handle the subproblems involving their own pri-
vate data, while updates of multipliers are well arranged

to task nodes. From the point of view of data security,
privacy preserving can be guaranteed for the reason that
we need no data transfer between all the nodes.

2) Asynchronous Parallel Computing: In step 2.c, only the
selected variables are updated in parallel and distributed,
together with the relevant Lagrangian multipliers. This
parallel scheme is highly asynchronous, especially for
the randomized selection technique. Moreover, the
essentially cyclic update rule can be considered as a
controller to dominate the asynchronous degree. The
period-T essentially cyclic update rule ensures that the
maximum asynchronous bound is less than 7', which is
generally a necessary condition to guarantee algorithm
convergence.

3) Efficient Parallel Solution of (9): The most important
issue is the huge dimension of parameters {x;}. One of
the key calculation techniques is to separate problem (9)
into low-dimensional subproblems, and further to unify
them with specific schemes. For instance, we can sub-
stitute (9) with the following computing scheme, that is,
forj=1,...,r

) k )
Xﬁ = arg min f,((xll) , ...,X;, e, (X;"")k>

12
I K\’
+%x€-—<zﬁ‘“+%> et ()

where variable x; is separated into r; blocks, which are
denoted as
- (X) )

Equation (11) means that a Jacobi-type pattern is taken

to inexactly compute xifﬂ in parallel, in other words, (9)
is replaced by m; subproblems (11). We not only sepa-
rate their computation to distributed task nodes but also
use the parallel computing technique to block wisely
calculate sub-blocks {(x;)}, respectively.

4) Efficient Inexact Implementation of (9): In fact, the
optimal solution of problem (9) is hard to guarantee
even when the closed-form solution can be expressed,
e.g., fi(x;) is a quadric function and in the form of
jxiTAixi. With properly chosen S;, problem (9) becomes
a convex problem; as a result, the optimal solution
of (9) can be written as (B + A)~1(BiZ ! + Ak
in closed form. However, the inverse of (81 + A;)
is still difficult to calculate, and we need to estimate
the inverse or introduce an iterative algorithm to inex-
actly solve (9). The above computing scheme (11)
can also be considered as an inexact version as we
guarantee an inexact estimation of the optimal solu-
tion of (9) through a series of parallel subproblems.
The key issue of implementing an iterative algorithm
for (9) is how to choose a proper inner iteration stop-
ping criterion. Recently, Yue et al. [33] introduced a
new efficient implementation scheme of ADMM for

2

(1)

(COREh S
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a specific linear constrained convex separable problem
which includes (5) if f; is assumed to be quadratic.

A. Discussions on the Joint Function h

Here, we focus on the joint function A(xi,...,X;) of
problem (1), which is greatly related to the problem struc-
ture. For instance, in MTL applications (2), & can be chosen
as the €1 2-norm, which indicates the fully similar parame-
ter activation structure for all tasks; or matrix nuclear norm
(trace norm) which indicates that all task parameters have a
linear relationship. Recently, the nonconvex penalty functions
start to draw attention to the machine learning commu-
nity. Although they have shown potential in obtaining better
accuracy and generalization, principled algorithms are not nat-
urally raised in contrast to on-the-shelf convex optimization
solvers. In [10], [24], [34], and [35], some nonconvex regu-
larizers are introduced to machine-learning applications, such
as SCAD [36] and MCP [37]. But they have statistical ora-
cle properties, that is, unbiasedness, sparsity, and continuity.
Further, some matrix form SCAD-type or MCP-type penalties
are established in [10] and [34].

In this article, the proximal operator with respect to function
h(xi,...,X,) is defined as follows:

. 1 «
prox), ({a;}):=argmin A(Xi, ..., Xm) + 3 ;uxi — a3
(12)

More specifically, if function A(-) is defined on the matrix
X = [x1, X2, ..., X;] like 2(X) in MTL applications, (12) can
be equivalently written as

1
prox}: (A):==argmin h(X) + Z”X - A||12p

where A = [aj, ap, ..., a,]. In order to have a well-defined
subproblem, usually /4 is required to be prox-bounded. That
is, there exists a y; > 0 such that when y is selected as
0<y <, pron is well defined. In addition, we assume
that the global optimum of optimization problem (12) is easy
to calculate for any {a;} along with an appropriate y > 0.
If h is convex, the prox-bounded assumption can be directly
satisfied because (12) will be strongly convex. Specifically,
we can guarantee the closed-form global minimization of (12)
if A is chosen to be ¢1 >-norm or nuclear norm. As for the
nonconvex case, for example, the SCAD-type or MCP-type
function, we can also obtain analytical solutions, respectively,
for y < a—1 and y < a accordingly, where the definition
of a can be found in the definition of SCAD and MCP in the
Appendix. Due to space limitations, we leave the analytical
solutions in the Appendix.

III. THEORETICAL CONVERGENCE RESULTS

In this section, we briefly discuss the theoretical results
of the above proposed algorithm framework. Although our
method can be considered as a modified extension of clas-
sical ADMM, the nonconvexity brings many new challenges.
The following theoretical achievement is novel, especially as
the first convergence result of ADMM for problems with
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nonconvex joint function h. To this end, we make a few
assumptions as follows.

Assumptions:

1) There exists a positive constant L; > O such that Vi

Vi) — Vi)l < Lillx; — yill, v%;,yi.

2) The parameter B; is chosen large enough such that the
x; subproblem (9) is strongly convex with modulus y;,
Bivi > 2L? and B; > L; for all i.
3) g is bounded from below,
g(X1, ..., Xy) > —00.
We make some comments based on the above assumptions.
As B; increases, subproblem (9) eventually will be strongly
convex with respect to x;, and the corresponding strong con-
vexity modulus y; is a monotonic increasing function of S;.
For the reason that f; is nonconvex, the condition B;y; > 2Ll-2
implies B; > L; (Bi > y) [311].

Theorem 1: Suppose the above assumptions hold and let
{{xf?}, {zf.‘}, {X;‘}} be the sequence generated by Algorithm 1,
then we have the following:

D lim [)xj — 2| =0, Vi,

2) let ({x7},{z*},{A]}) denote any limit point of the

sequence {{xff}, {zﬁ.‘}, {)Lf.‘}}. Then, the following state-
ment is true:

13)

that is, ¢ = min

0=Vfi(x})— A, Vi (14a)

({z1}) € argmin h({z;}) =) (A1, x} —z)  (14b)
i=1

x; =1z, Vi (14c)

which means any limit point of Algorithm 1 is a
stationary solution of problem (5).

Proof: Unlike the convex case, it becomes significantly
difficult to guarantee the decreasing of the distance of
{{xf-‘}, {zé‘}, {Xf}} to a stationary point. Instead, at first, we
will prove the sufficient decrease of the augmented Lagrangian
function value sequence; based on this, we will prove the lim-
itation of the augmented Lagrangian function value sequence
exists and is lower bounded; then we will reach the above
convergence results a) and b).

In the following text, we briefly present these two major
steps.

1) The sufficient decrease with respect to the augmented

Lagrangian function value
E(XHI z’.‘“,kf“‘l) —L(xlf z kf)

1 ('} 127

= % (-g)ber ol

2
(L_i _
i#0,ieCk+1 pi

It is obvious that (18) implies that if the assumption
Bivi = 2Ll-2 holds, then the augmented Lagrangian func-
tion value will always decrease. This is the key property

in order to guarantee convergence results.
2) The limit of the augmented Lagrangian function value
exists and is lower bounded by g defined in the third
g, which

assumption, that is, lim E(xf-‘,zf,ké‘) >
o

15)

=
ensures the limit can be achieved.
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Due to space limitations, we leave the proof details to the
supplementary material. |

A. Discussions and Computational Complexity

This is the first theoretical result to analyze the convergence
of ADMM for solving a certain nonconvex problem (5), where
both f;(x;) and h(xq, ..., X,) are nonconvex. We need to con-
trol that {f;} are large enough to guarantee convergence, while
in fact, the large enough {8;} ensures that the (zi, ..., z,) sub-
problems (9) is well defined and the {x;} subproblems (9) are
all strongly convex for all i. For efficient parallel and inexact
implementation cases of (9), that is, bullets 3 and 4 in the
discussion part of our framework, we can also obtain the con-
vergence by following the same analytic procedure. We leave
the details and extensions in future work.

In the following text, we give a brief discussion about the
computational complexity of the proposed algorithm frame-
work. In each iteration, the subproblem of (zy, ..., z,;) (9) can
usually be computed in an efficient elementwise fashion, with
a complexity of O(Z;": 1 7). In addition, some extra calcu-
lations are needed, like SVD, and the worst-case complexity
should be O(max(m, max(n,-))3). The subproblem for x; (9)
has analytical solutions for quadratic f;, while the main issue
is to compute the inverse of a series of n; x n; matrices, but it
need to be computed only once and this can be done in ini-
tialization. The complexity for x; subproblem should be (’)(n%)
for matrix-vector multiplication. The complexity for updating
A; and p; is O(n;) and can be ignored. The overall computa-
tional complexity of our algorithm framework in each iteration
is O(max(m, max(n;))® + 30, n? + 230 ny).

IV. EXPERIMENTS AND DISCUSSION
A. Traditional Multitask Learning

First, we consider traditional MTL applications, and mainly
focus on problem (2) in the absence of outlier task. We
use the logistic regression for the empirical loss function f;.
h can be chosen as the group-SCAD, the group-MCP, the
matrix-SCAD, and the matrix-MCP, respectively, which are all
nonconvex functions. The concrete formulas are moved to the
supplementary material. We compare with the popular FISTA
method [14], [16], which has been widely used to solve MTL
applications. In order to fairly and effectively compare with
FISTA, we also distributed implement FISTA on our comput-
ing cluster. The master node handles the iterative update while
the worker nodes calculate the gradient with respect to their
own task and dataset. The iterates and gradients are transferred
through the network.

We use three real-world standard benchmark datasets for
performance evaluation and comparison, which have been
widely used in literature and are described as follows.

1) SARCOS [38]: The dataset relates to an inverse dynam-
ics problem for a seven degrees-of-freedom SARCOS
anthropomorphic robot arm. The task is to map from
a 21-D input space (seven joint positions, seven joint
velocities, and seven joint accelerations) to the corre-
sponding seven joint torques. There are 44 484 training
examples. As a result there are seven tasks to learning
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simultaneously, that is, m =7, while the feature dimen-
sion n; equals to 21.
2) SCHOOL [39]: The dataset is from the inner London
education authority. It consists of the examination
scores of 15362 students from 139 secondary schools
in 1985, 1986, and 1987. There are 139 tasks in
total, corresponding to examination scores prediction
in each school. The input features include the year of
the examination, four school-dependent features, and
three student-dependent features. We follow the same
setup as previous MTL works and obtain a 27-D binary
variable for each example.
3) E2006-tfidf [40]: The dataset has 16087 training sam-
ples and 3308 testing samples with n = 150 360 features
per sample, which involves a feature representation
of a series of “Form 10-K” company annual reports.
Variables include history and organization of the com-
pany, equity and subsidiaries, financial information, etc.
We randomly separate the entire training dataset into
ten parts. Each part represents one task for MTL with
1600 samples, while the last task contains 1687 samples.
Experiments are carried on a cluster with ten task nodes and
one master node, where each machine is equipped with 2 Intel
Xeon E5450@3.00 GHz CPUs, 16-GB memory, and 10-Gbs
Ethernet. Codes are written in MATLAB 8.6 (R2015b) using
MPI for communication.

The parameter y is set to be 0.1. The stopping criterion of
FISTA for problem (1) is set by

2
H (XII‘H,...,XI,‘,,H) - (x’l‘,...,xfn)H 3
[ k) [P+

where the step size for FISTA is set to be 0.1. The stop
criterion of Algorithm 1 for the reformulation problem (3) is

ka+1 _ gkt H2 ”Xk+1 _ XkH2

max{ [+ |2 2412 1 ]

where xf = [X’l‘, el x’,;] and z¥ = [z’l‘, e, z',‘n]. The parame-
ter B; is set to be 100. It is unclear that whether this setting
satisfies the second assumption, because it is difficult to esti-
mate the Lipschitz constant L;. But we still can guarantee the
convergence of our algorithm under this setting.

For Algorithm 1, two variable selection schemes are used:
1) all the variables {x;} are chosen to update and 2) [(m/2)]
variables are randomly chosen to update, while after 7 iter-
ations, we will check the essentially cyclic update rule and
force the unselected variables to update. We denote these two
specific algorithms: 1) Alg-I-full and 2) Alg-1-rand. For all
algorithms, we set the stopping criterion parameter € = 104,
T =2m.

In Table I, we evaluate the efficiency of our algorithm
framework (Algorithm 1), and compare it with FISTA for for-
mulation (2) by using four nonconvex penalties (group-SCAD,
group-MCP, matrix-SCAD, and matrix-MCP) on three real
datasets. We compare the iteration number “Iter #,” objective
function value “Objective,” constraint violation “Constraint,”
and computing time “Time,” respectively.
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TABLE I
COMPARISON ON LOGISTIC REGRESSION WITH FOUR NONCONVEX
PENALTY CASES OF ALG-1-FULL, ALG-1-RAND, AND FISTA

| Penalty | Dataset | Algorithm | Iter. # | Objective |  Constraint | Time(s) |

FISTA 172 86.274 / 326.51

SARCOS Alg-1-full 69 86.198 | 2.79895e-05 120.74

Alg-1-rand 96 86.204 | 4.17219e-05 191.25

FISTA 219 173.291 7 578.21

group-SCAD SCHOOL Alg-1-full 104 172,973 | 3.26145¢-05 209.35
Alg-1-rand 127 173.216 | 4.27198e-05 286.14

FISTA 367 251.592 /| 2634.19

E2006-tfidf | Alg-1-full 198 251.392 1.87159¢-05 1273.43

Alg-1-rand 227 251.501 | 2.77236e-05 | 1549.16

FISTA 189 73.192 / 376.19

SARCOS Alg-1-full 76 73.054 | 2.37415e-05 144.07

Alg-1-rand 105 73.137 | 3.16273e-05 213.26

FISTA 234 151.293 / 709.14

group-MCP SCHOOL Alg-1-full 124 150.874 | 3.01725e-05 241.59
Alg-1-rand 148 151.171 | 2.19754e-05 313.26

FISTA 391 227.195 /| 2819.21

E2006-tfidf | Alg-1-full 226 226.771 1.37726e-05 | 1606.37

Alg-1-rand 272 227.019 | 3.07138e-05 1927.56

FISTA 156 103.291 / 431.27

SARCOS Alg-1-full 72 103.177 | 2.76731e-05 207.19

Alg-1-rand 98 103.224 | 3.07752e-05 263.25

FISTA 179 219.376 / 723.19

matrix-SCAD | SCHOOL Alg-1-full 84 219.113 | 2.15142e-05 294.33
Alg-1-rand 117 219.275 | 3.32994e-05 389.26

FISTA 317 433.257 /| 4219.46

E2006-tfidf | Alg-1-full 182 4327774 | 3.18741e-05 | 2613.69

Alg-1-rand 231 432976 | 3.76221e-05 | 3117.57

FISTA 176 106.132 / 489.14

SARCOS Alg-1-full 80 106.029 | 1.97210e-05 237.26

Alg-1-rand 106 106.122 | 2.18729e-05 317.04

FISTA 216 189.231 / 771.32

matrix-MCP SCHOOL Alg-1-full 142 189.017 | 3.18162e-05 329.51
Alg-1-rand 161 189.069 | 3.29071e-05 426.44

FISTA 372 369.256 7] 331657

E2006-tfidf | Alg-1-full 241 368.974 | 2.33561e-05 1817.32

Alg-1-rand 293 369.175 | 2.86173e-05 | 2153.16

Table I shows that the proposed algorithm framework
(Algorithm 1) has efficient performance for logistic regression
with all of these four nonconvex penalty cases. Both Alg-1-full
and Alg-1-rand can exceed FISTA from both the computing
speed and calculation accuracy, which means less computing
time and less objective function value, respectively. Indeed,
the result proves the convergence of our method as well as
the validity of reformulation (5). Moreover, the convergence
theoretical result has been verified for the nonconvex prob-
lems. Alg-1-full performs better than Alg-1-rand because all
of the variables {x;} are updated in each iteration while only
half of the variables are renewed. However, only half vari-
ables do not mean half convergence speed, and this implies
that the asynchronous parallel actually accelerates the conver-
gence of the proposed algorithm. Fig. 1 contains the objective

Iterations
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Fig. 2. Multitask environment Arcobot-LCP.
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Fig. 3. Mean rewards of all three algorithms: Alg-1-rand (beta 100,
Alg-1-rand), Alg-1-full (beta = 100, Alg-1-full), and Baseline (beta = 0).

value sequence with respect to the iteration number for logistic
regression with group-SCAD penalty on three datasets. Here,
we only present the case of group-SCAD penalty; as for the
other three penalties, the comparison seems to be the same.

B. Multitask Reinforcement Learning

Furthermore, we consider the multitask reinforcement learn-
ing application, whose model can be included into the general
formulation (1). Based on [41], we design a new multitask
reinforcement learning model utilizing our proposed non-
convex optimization framework. Before presenting the con-
crete formulation, we describe the experiment environment as
follows.

The Acrobot-vl in the OpenAl open source Gym
toolkit [42] is employed as the fundamental environment here.
Acrobot is a 2-link pendulum with only the second joint actu-
ated, while both links point downward initially. The goal is to
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Fig. 4.

swing the end effector at a height at least the length of one
link above the baseline. Both links can swing freely and can
pass by each other, which means they do not collide when
they have the same angle.

The state space consists of the sine and cosine val-
ues of the two rotational joint angles 6; and 6,, together
with the joint angular velocities y; and jy», that is,
[cos(01), sin(fy), cos(B2), sin(62), y1, ¥2]. 2 denotes the angle
between these two links. For instance, the zero angle of the
first link corresponds to the first link pointing downward, while
the zero angle of the second link corresponds to having the
same angle between the two links. The action is either apply-
ing +1, 0 or —1 torque on the joint between the two pendulum
links.

Our multitask environment is designed via modifying
Acrobot-v1. Specifically, we consider different mass centers
of the two links in the nine-task system instead of fixing the
middle, and the new environment is called Arcobot-LCP (see
Fig. 2). The detailed information of the mass centers can also

Grouped lasso constraint satisfaction. (a) Alg-1-rand. (b) Alg-1-full. (c) Baseline.

be found in Fig. 2, where the blue dot in each link denotes
their mass center.

The dimension of the state space of this environment is a
total of 400. (See the hyperparameter setting section for more
details.) In our model, the Q-network is introduced with the state
vector as input, while the huge state space dimension will lead
to poor training efficiency. Therefore, the sparse Q-network
is adopted to adaptively select the states. We assume that
Q-networks of all tasks share the same sparse structure, so that
we add a group sparse penalty on all parameters.

For this specific structured multitask reinforcement learn-
ing problem, the related formulation (1) can be described as
follows:

N.
1 1
fix) = N E I7i(sijs aij) +v max Qi(s;',jv a; j; Xi)
i L
]=1 )
2
— Qi(sij, aij; X;) H2
h(Xt, ..., Xm) = MIX|l2 g
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Fig. 5. (a) Consensus constraints violation and (b) objective function values.
N; . .
where {s;;, a;j, 5} ity 18 sampled from the experience replay

buffer of task i, r; is the reward function of the task i, and Q;
is the Q-value function of the task i. Q; = o T (¢ (s;, a,-)Txil)x?
is a two-layer multiple layer perceptron, and xi1 and xl2 denote
the first-layer parameters and the second-layer parameters sep-
arately. o (x) = max(0, x) is the ReLU elementwise nonlinear
function, and ¢ is a common feature extractor. x; denotes the
ith column of X and [|X[l2,1 = Y72, lIxill2.

In this experiment, a two-layer multilayer perceptron with
a ReLLU nonlinear activation function was used as the Q-value
function estimator. The number of neurons in the hidden layer
is 32. The size of the experience replay buffer is set to 50 000,
the number of samples per training is 1000 per task, and the
data collected by each episode per task is 100 transitions. It is
worth noting that we first use the RBF sampler (variant of [43])
with variances of 0.5, 1.0, 1.5, and 2.0 for the input data (6-D
state vector) to be up to 400 dimensions; thus, the input dimen-
sion of the Q-value function is 400. We use the L-BFGS
algorithm as the nonconvex function optimizer. The penalty
coefficient of the consensus constraint is set to 100, and the
penalty coefficient of the sparse constraint is set to 0.01. Due
to the large number of parameters (since the action of the
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agents is discrete and each action corresponds to a Q-function
estimator, so the total number of parameters for each task is
38 496), the number of loops of the ADMM algorithm is set
to 20 in order to save training time.

We further choose the results of nine task independent train-
ing without sparse constraints as the benchmark results. Since
the implementation of the related algorithm using ADMM in
this article, the above benchmark algorithm can be imple-
mented by setting the penalty coefficient of the consensus
constraint of the ADMM algorithm to 0. In addition, we also
compare the experimental results of Alg-1-rand and Alg-1-full.
For the former, [(m/4)] = 3 variables are randomly chosen to
update, while after T = 20 iterations, we will check the essen-
tially cyclic update rule and force the unselected variables to
update.

Fig. 3 shows a comparison of the average rewards of the
three algorithms over the test set (1000 timesteps) as the num-
ber of training epochs increases. It can be seen from the figure
that the performance of the three algorithms is basically the
same. Fig. 4 shows the satisfaction of different algorithms for
grouped lasso sparse constraints. Specifically, we select the
Q-value function estimator corresponding to one action of the

Authorized licensed use limited to: East China Normal University. Downloaded on April 28,2022 at 08:14:24 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: DISTRIBUTED AND PARALLEL ADMM FOR STRUCTURED NONCONVEX OPTIMIZATION PROBLEM

agent, that is, the first-layer parameter of the two-layer per-
ceptron, and the dimension is R400%32 The 32 hidden layer
neurons can be regarded as 32 different implicit semantic
embeddings for 400-D input data. Due to space limitations,
we randomly select four embeddings for display. The dark
portion of each row in the figure represents a parameter value
of less than 0.001. It can be seen that the algorithm proposed
in this article has the ability to achieve very sparse feature
selection, and the selected features are shared between tasks.
Combined with Fig. 3, the proposed algorithm can achieve the
same performance as the benchmark algorithm based on very
few features.

Fig. 5 shows the satisfaction of the consensus constraints
and the value of the loss function for the Alg-1-full algorithm
and the Alg-1-rand algorithm in solving the ADMM problem.
These eight pictures are randomly selected from the training
of 200 epochs of reinforcement learning algorithms. It can be
seen from the figure that 20 cycles of the ADMM algorithm
can ensure convergence.

V. CONCLUSION

We have proposed a distributed and parallel algorithmic
framework for the nonconvex optimization problems, which
can find wide applications in modern machine-learning prob-
lems. The algorithm framework is based on the popular
ADMM technique, while it can handle a more challenging
and general case that all terms in the objective function are
nonconvex. Theoretical convergence of the proposed algorithm
is established only with the assumption that parameter {8;} is
large enough. The algorithm is evaluated on the popular MTL
benchmarks with nonconvex penalties. In fact, our framework
can incorporate many existing MTL formulations either in the
presence of outlier tasks or not, and can routinely adapt them
to the parallel and distributed computing setting. However,
our algorithm framework still has some limitations: the com-
bined regularization term should be discussed in detail with the
purpose to raise the efficiency; from the perspective of theoret-
ical analysis, the convergence rate should be further discussed.
Furthermore, we will leave a more comprehensive empirical
study for the parallel case and inexact case to the future work.

APPENDIX A
DiscussIONS OF SCAD-TYPE
AND MCP-TYPE PENALTIES

We first introduce two seed functions (which play the role
as the absolute value function | - | for £;-norm).
1) SCAD [36]

A0l 0] < &
g(10]; 2 a) = § T 5 < 1) < an
et 0] > ax
where a > 2 and A > 0.
2) MCP [37]
. A0 — 6% 16] < ar
g0l A, a) = % 0] > ax

where a > 0 and A > 0.
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The SCAD or MCP penalty for x € R” is defined as g(x) =
> 1 8(Ix]; A, @). They can both result in an estimator with
three important properties: 1) unbiasedness; 2) sparsity; and
3) continuity. This is an obvious advantage over the convex
£, penalty which usually leads to biased estimators and the
concave £, penalty with 0 < p < 1 that often fails to satisfy
the continuity condition. More algorithms can be developed
based on the structure of SCAD and MCP. More discussions
can be found in [44]. Based on these seed functions, we define
four penalties: group-SCAD, group-MCP, matrix-SCAD, and
matrix-MCP for X € R™*"
n

group-SCAD/group-MCP: h(X) = Zg(HX[:,j]HZ; A, a)

j=1

matrix-SCAD/matrix-MCP: h(X) = Z g(aj; A, a)

j=1
where {o;} is the singular values of matrix X.

By their above definition, it is obvious that group-SCAD and
group-MCP have similar structures with Group-Lasso, while
matrix--SCAD and matrix-MCP have similar structures with
nuclear norm. Due to the oracle properties of SCAD and MCP,
the new four penalties also have the oracle properties, that
is, unbiasedness, sparsity, and continuity. Hence, group-SCAD
and group-MCP have advantages theoretically to Group-Lasso
regarding the group sparsity, while matrix-SCAD and matrix-
MCP can perform better than nuclear norm for the low-rank
result.

However, an important issue is that g(|@[; A, a) is not convex
with respect to 6; thus, classical algorithmic and theoretical
results cannot be directly applied. Fortunately, they have two
special properties as which can be used to design the algo-
rithm with sound theoretical results. Recalling the proximal
operator of both SCAD and MCP penalties, we can obtain
two analytical solutions for SCAD and MCP, respectively, for
T <a—1 and T < a accordingly

sign(z)(1zi] —tA) 4, |zl = (1 +1)A
(prox; (Z))i = —(a_l)zi;_sll‘gjltl(zi)ra'\, (1+ A < |zi| < ar
Zi, air < |z
(poxi (@) = sign(z) (3% 1l - 2% . Jul < @
i zi, |z;| > ah.

This property is similar to the £1-norm, whose proximal oper-
ator is also called shrinkage. When we compute {zf“} in
our algorithm framework, these proximal operators can be
efficiently used to solve the associated subproblems.

APPENDIX B
PROOF OF THEOREM 1

Assumptions:
1) There exists a positive constant L; > O such that

IVAi(xi) — Vi)l < Lillx; — yill, VX;,yi, Vi. (16)

2) The parameter B; is chosen large enough such that the
x; subproblem (9) is strongly convex with modulus y;,
Bivi > 2Ll.2 and B; > L; for all i.
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3) g(x) is bounded from below, that is, ¢ = ming(x) >
—00.
Theorem 2: Suppose the above assumptions hold and let
{{xif}, {zé‘}, {k;‘}} be the sequence generated by Algorithm 1,
then we have the following:
1) klim Ixf —zf| =0, Vi
—> 00

2) let ({x7},{z’},{A]}) denote any limit point of the
sequence {{x;‘}, {zf-‘}, {kf}}. Then, the following state-
ment is true:

0=Vfi(x)—A;, Vi
m
, z;) € argmin h({z;}) —Z(X;, X — zi> (17b)
i=1

Vi (17¢)

(17a)

(z‘l',...

* *
X, =17,

which means any limit point of Algorithm 1 is a
stationary solution of problem (5).
Before proving this theorem, we first prove some lemmas.
Lemma 1: For Algorithm 1, we have the following suf-
ficient decrease with respect to the augmented Lagrangian
function value:

E(Xf“, zf“, kf“) - E(xf‘, zf-‘, Xf)

L2 ,
-y (_t_&)\x
i#0,ieCk+t1 pi 2

Proof: We first split the sufficient decrease with respect to
the augmented Lagrangian function value by

E(x’.‘“ k+1 kk-&-l) ﬁ(xk 7 )‘k)

2
k1 k
i X

(18)

1 ’l i %>

- [ﬁ(xf“, 2 xk+1> £<X1;+1’ 2, kk):l

+[o(x A AE) — £ (xk 2 )]

Further, we will try to bound these two terms in (19) and the
first term can be bounded by

E(Xl_c+l -1 Xk+1) L(x'.‘“

1 ’ l

19)

k+1 lk)

1 ’ l

lg+1>

_ k k+1 Jk+1

—Z<)‘i_)‘i VX —Z
i=1

1

= 2 g~

i#0,ieCk+1

(20)

where the last equation is obtained through (10) and the fact
that Xf‘H = Xf-‘ for all variable block x; has not been updated.
Then, we consider the second term in (19), which can be
bounded by

£(xf+l,zlf“, kf‘) - E(xk Zf Xk)

10 %M

_ [£<Xk+l7 21 lk) E(Xig7z{§+l’k{_<)i|

+ [ﬂ(x 2 H,).f‘) — ﬁ(xl,zl,kfﬂ

<3 (meeet a2 e )

k+1 k
X, —X

i=

+ [ﬂ(x ,Z; k1 Xk) E(x,,zl,lfﬂ
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= Z [<in£(xf+l,zf+l,),f-‘),xf""l—Xf-‘>

i#0,ieCk+1

_% xEH b 2]
, 2
<- ¥ %fo“ ~x 1)

i#0,ieCk+1

where the first inequality is obtained through that £(x;, z;, A;)
is strongly convex with respect to Xx;; the second inequality is
obtained through that {Zk+1} are the guaranteed global mini-
mizer of subproblem (9), xi.‘Jr] = xF for i ¢ C**1; the third
inequality is obtained through the optimality condition of sub-
problem (9) with respect to each x;. Further, by adding (20)
and (21), we have

r Xi§+l’zi§+l’li§+l _£< Xk, “)‘k>

— [ﬁ(xf+l7z{g+l7x{g+l) _ E(xf“,z’-‘“, xf)]
+ £

[ (xf“, zf.‘H, kf‘) — L(x, 7%, lk>]
2

. 2
=D DR VY D DI M
i£0,ieCk+1 Bi i£0,ieCk+1
Ly 2
< LY ’X’.‘“_X’F (22)

where the last inequality is obtained through the fact that
optimality condition of (9) =
k
vA(x) + ﬁi(xi‘“ —7T - %) =0

k
(10) = ,31( <1 Zi_c+1 _ %) _ _)‘fﬂ

then we obtain kf“ = Vf,-(xf“) and Vf; is Lipschitz
continuous with constant L;. Equation (22) exactly
implies (18). [ |

It is obvious that (18) implies that if the assumption B;y; >
2Ll.2 holds, then the augmented Lagrangian function value will
always decrease. This is the key property that we need to prove
in order to guarantee the convergence result of Algorithm 1.

Lemma 2: For Algorithm 1, the following limit exists and
is lower bounded by g that is, limg_ oo E(xf‘, zé‘, X{-‘) > g.

Proof: Recall the augmented Lagrangian function and
express into

E(Xk+1 k41 ka)

' Z
f( kH)—i—h( kbl 5{+1>

. 2
<k§‘+1, xeH Zi;+l> _ Bif et _ e H }
2 1 l

Il

I
_

|
M s

I
=
N
N
—_ e —

+1 k—H)

s &y

1§+1>

+i f;( k+l> <Vf,( k+1) AR

Bi
2

Zh(zlfﬂ,... k+l) Zf’< k+1)

+

i

2
Xkt _ gkt H }

k+l k+l
..., L

(23)
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where the last inequality is obtained through that the Lipschitz
continuity of Vf; and B; > L; for all i. Recalling the
third assumption, we can guarantee that ll(xf-‘“,zf.‘“, lf“)
is lower bounded. This, combined with (18), implies that
C(xi-‘“, zf‘H, Xf‘H) is monotonically decreasing and is con-
vergent. This completes the proof of this lemma. |

This property ensures the existence of the limit of the aug-
mented Lagrangian function value sequence which will help
prove the convergence of Algorithm 1. Next, we move to the
proof of Theorem 2.

Proof: At first, with the essentially cyclic update rule, we
have

(T AT AT - (kA0

i i’

L2 Vi 2
E ] L k+t k+1—1
o 2 ‘ Xio X H

X

k+t k+t—1 2
i X

Pi 2

v
2
T
_ i(ﬁ_ﬁ‘

and by using the fact that each index i has been updated at
least once, we have that

‘ 1 xﬁ.‘“)(

1
where k(i) and k(0) denote the last updated iterative numbers
before k+1 for x; and (zi, ..., z,), respectively. Further, we

have
= [wa(si) = i)

g+l _ kO

—~0, Vi 24)

kaﬂ _ xf(")(

IA

L;

) ~0, Vi
which further implies ||xi~“H — zi-“H
first part of this theorem.

Next, we show the second part of this theorem. Recall
the optimality conditions with respect to x; and (zy, ..., Zy),
respectively, as follows:

k
Vf,-(xl-‘H) + ﬂi(X’»H—l - zf“ A

|| = 0. This completes the

1 i Bi :0,i#07ieck+l

A
z; — (xf— Ff)

k - Bi
> h(zl‘H, ...,zf,j‘l) +> %
i=1
Vz;,0 € Ck+1,
The first inequality is equivalent with

Vfi<xi§+1) by ﬁi(x'ﬁl - z§+‘) =0, i#0,ieCH!

1

h(zy,....zm)+ )5
i=1

and the second inequality implies that (convexity without %)

Wz, ..., Zy) — h(z]f’l, o zk“)

m

m )‘1?
+Z Bi| 25 — xf—% zi— 2 ) >0
i=1 Bi
vz;, 0 € CHH1. (25)
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Using the definition of the essentially cyclic update rule, we
have that for all i

i

Vf; (xk(i)) — M@ =0, Vi £0, for some k(i) € [k, k+ T1,

hzi, ... .2,) —h(z’;@), . .,z’,;(O)) (26)
m
+ Z(xif(o)+1 + Bi (X{f(o) _ Xf(o)*l)’ 7 — Zf(0)>
i=1
>0, Vz;, for some k(0) € [k, k+ T] 27

and we also have (24). Using this result, taking limit for (26)
and (27) and using the fact that Vi

Recall (26) and by taking the limitation, we can obtain that
for all i

, Xi'(_H

—>xr, Sz

Xt xkl -0 ; D LAR I § 5

Vfi(x})

which implies (17a). Further, for (27), we can obtain that for
all Z;

—A =0

m

.,zm)—h(zf,...,z;)—i—Z(X?,Zi—X?)ZO

i=1

h(zy, ..

which can be considered as the optimality condition of (17b)
and, as a result, we obtain (17b). Further, (17¢) can be obtained
due to the fact that ||)»f-‘+1 — Xf | — 0. This completes the
second part of this theorem. |
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