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ABSTRACT
Enhancing the diversity of policies is beneficial for robustness, ex-
ploration, and transfer in reinforcement learning (RL). In this paper,
we aim to seek diverse policies in an under-explored setting, namely
RL tasks with structured action spaces with the two properties of
composability and local dependencies. The complex action struc-
ture, non-uniform reward landscape, and subtle hyperparameter
tuning due to the properties of structured actions prevent existing
approaches from scaling well. We propose a simple and effective RL
method, Diverse Policy Optimization (DPO), to model the policies in
structured action space as the energy-based models (EBM) by fol-
lowing the probabilistic RL framework. A recently proposed novel
and powerful generative model, GFlowNet, is introduced as the
efficient, diverse EBM-based policy sampler. DPO follows a joint
optimization framework: the outer layer uses the diverse policies
sampled by the GFlowNet to update the EBM-based policies, which
supports the GFlowNet training in the inner layer. Experiments on
ATSC and Battle benchmarks demonstrate that DPO can efficiently
discover surprisingly diverse policies in challenging scenarios and
substantially outperform existing state-of-the-art methods.
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1 INTRODUCTION
The history of human civilization can be seen as a chronicle of
creative capacity, i.e., the diversity of solutions to the same puz-
zle [63]. Counter-intuitively, a popular consensus in deep learning
with theoretical justifications [50] that most local optimas to a non-
convex optimization problem are very close to the global optimum
has led mainstream AI research to focus on finding a single local
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solution to a given optimization problem, rather than on which
local optimum is dicovered [103]. It is no coincidence that most
methods in reinforcement learning (RL) are also designed to seek a
single reward-maximizing policy [59, 71, 76].

However, different local optima in the policy space can corre-
spond to strategies that differ in nature, which makes the above
consensus problematic in RL tasks where the environment is unsta-
ble. For example, in adaptive traffic signal control (ATSC) [81, 89, 90]
(conceptual diagram and more examples are included in Figure 1),
if two traffic flows are desired to reach the target points from the
departure points quickly, multiple control strategies with similar
average commuting times may exist due to the combinatorial na-
ture of traffic lights. The performance of a single policy obtained
by reward maximization is bound to be affected if the subsequent
traffic volumes on other sections of the road network associated
with the traveled section of that traffic change. Moreover, if our
goal is to discover a diverse set of policies, some of these may prove
more valuable than others in different situations.

Therefore, celebrating the diversity of policies is beneficial for
many RL applications. In addition to ATSC and the simple game
in Figure 1, these RL application areas include but are not limited
to conversation generation in intelligent customer service [41],
drug discovery in smart healthcare [67], and simulator design in
automated machine learning (AutoML) [86]. Furthermore, in addi-
tion to robustness, a set of diverse policies can also be useful for
exploration [66], transfer [38], and hierarchy [1] in RL.

There is no doubt that RL researchers have demonstrated their
creative ability in discovering diverse policies. The majority of the
literature has been done in the field of neuroevolution methods
inspired by Quality-Diversity (QD), which typically maintains a
collection of policies and adapts it using evolutionary algorithms to
balance the QD trade-off [16, 24, 45, 62, 65, 70]. In another part of
the work, intrinsic rewards have been used for learning diversity in
terms of the discriminability of different trajectory-specific quan-
tities [1, 18, 25, 26, 29, 72, 97], or have been used as a regularizer
when maximizing the extrinsic reward [23, 40, 55, 73, 100]. There
is also a small body of work that transforms the problem into a
Constrained Markov Decision Process (CMDP) [15, 75, 98, 103], or
implicitly induce diversity to learn policies that maximize the set
robustness to the worst-possible reward [38, 95].

This paper considers a more complex, realistic, less focused,
and under-explored setting, namely RL tasks with structured action
spaces. We define structured actions as actions with the following
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Figure 1: Robustness of diverse policies in two non-stationary environments: (Left) the adaptive traffic signal control and
(Right) the predator-prey. In these tasks, diverse policies can quickly adapt to changes in the external environment.

two properties: composability, i.e., environmental actions consist of
a large number of atomic actions with complete functionality and
local dependencies, i.e., there are local physical or logical correlations
between atomic actions1. For example, in ATSC, the phases of all
traffic signals on all intersections in the entire road network must
be redetermined at certain intervals, and atomic actions are phases
of each signal and interact with each other through the physical
road network. In addition, for the predator-prey task in Figure 1,
the atomic actions are the decisions of each predator, and there is a
local spatial, logical association.

The high dimensionality of the RL agent’s policy due to the com-
posability of structured actions prevents existing methods from
scaling well. Specifically, the combinability will make the underly-
ing reward landscape of the RL problem particularly non-uniform,
which may make QD-like methods require substantially large pop-
ulation sizes to fully explore the policy space and prevent the algo-
rithm from collapsing to visually identical policies [77, 103]. Also,
due to composability, the complex soft objective introduced by in-
trinsic reward or CMDP-driven methods will result in non-trivial
and subtle hyperparameter tuning [55, 65]. In addition, the existing
agents’ policies are mainly parameterized categorical distributions
or Gaussian distributions. Their extension to structured actions
with independent assumptions on atomic actions will prevent the
agent from effectively using the structural information of environ-
mental actions to achieve an efficient search for the policy space.

We propose a simple and effective RL method, Diverse Policy
Optimization (DPO), to discover a diverse set of policies in tasks
with structured action spaces. We follow the probabilistic reinforce-
ment learning (PRL) framework [40] to transform reinforcement
learning problems under stochastic dynamics into variational in-
ference problems on probabilistic graphical models and model the
policies of RL agents as the energy-based models (EBM). The action
distribution induced by this EBM in a structured action space is
highly multimodal, and sampling from such a high-dimensional
distribution is intractable. To this end, we introduce a recently
proposed novel and powerful generative model, Generative Flow
Networks (GFlowNet) [4, 5, 33, 99], as the efficient diverse policy sam-
pler. GFlowNet can be regarded as amortized Monte-Carlo Markov
chains (MCMC), which gradually builds composable environmental
actions through the single but trained generative pass of "building
blocks (i.e., atomic actions)", so that the final sampled environmen-
tal actions obey a given energy-based policy distribution.

Notably, our method does not simply introduce the GFlowNet
to RL with structured action spaces. Since in the PRL framework,
1In this paper, only pairwise relationships between atomic actions are considered.

with the update of the soft Q function, the energy-based policy
distribution is also constantly changing. This violates the assump-
tion of the fixed energy model in GFlowNet and makes DPO face
a more complex optimization problem. Therefore, we model DPO
as a joint optimization problem: the outer layer uses the diverse
policies sampled by the GFlowNet to update the soft Q function,
and the inner layer trains the GFlowNet through an EBM based
on the soft Q function (see Figure 3). Furthermore, a two-timescale
alternating optimization method is proposed to solve it efficiently.

We empirically validate DPO on ATSC tasks [2] where atomic ac-
tions have local physical dependencies, and more generally, Battle
scenarios [102] where atomic actions have logical local dependen-
cies. Experiments demonstrate that DPO can reliably and efficiently
discover surprisingly diverse strategies in all these challenging
scenarios and substantially outperform existing baselines. The con-
tributions can be summarized as follows:
(1) We propose a novel algorithm, Diverse Policy Optimization, for

discovering diverse policies for structured action spaces. The
GFlowNet-based sampler can efficiently sample diverse policies
from the high-dimensional multimodal distribution induced by
structured action spaces.

(2) We propose an efficient joint training framework to interleaved
optimize the soft-Q-function-based EBMand the reward-conditional
GFlowNet-based sampler.

(3) Our algorithm is general and effective across structured action
spaces with physical and logical local dependencies.

2 PRELIMINARIES AND NOTATIONS
The proposed DPO follows the PRL to model policies as a high-
dimensional multimodal energy-based probability distribution and
introduces GFlowNet to efficiently sample policies with diversity
from this distribution. Below,we briefly review the PRL andGFlowNet.

2.1 Probabilistic Reinforcement Learning
PRL aims to learn the maximum entropy optimal policy:

𝜋∗ent = arg max
𝜋

∑︁
𝑡

E(𝑠𝑡𝑒 ,𝑎𝑡𝑒 )∼𝜌𝜋
[
𝑟
(
𝑠𝑡𝑒 , 𝑎

𝑡
𝑒

)
+ 𝛼H

(
𝜋
(
· | 𝑠𝑡𝑒

) ) ]
,

where 𝑠𝑡𝑒 ∈ S𝑒 and 𝑎𝑡𝑒 ∈ A𝑒 denotes the state and action respec-
tively. The subscript 𝑒 represents the “environment”, which is used
to distinguish related concepts in RL from GFlowNets, and the 𝛼 is
the coefficient to trade off between entropy and reward. Function
H denotes the entropy term. By defining the soft 𝑄 function as:

𝑄∗soft
(
𝑠𝑡𝑒 , 𝑎

𝑡
𝑒

)
:= 𝑟𝑡𝑒 + E𝑠𝑡+ℓ𝑒 ∼𝜌𝜋

[∑∞
ℓ=1 𝛾

ℓ
(
𝑟𝑡+ℓ𝑒 + 𝛼H

(
𝜋∗ent

(
· | 𝑠𝑡+ℓ𝑒

) ) ) ]
. (1)



The optimal maximum entropy policy can be proved as in [40]

𝜋∗ent = exp
(

1
𝛼

(
𝑄∗soft

(
𝑠𝑡𝑒 , 𝑎

𝑡
𝑒

)
−𝑉 ∗soft

(
𝑠𝑡𝑒
) ))

, (2)

where the soft value function 𝑉 ∗soft is defined by

𝑉 ∗soft
(
𝑠𝑡𝑒
)
= 𝛼 log

∫
A𝑒

exp
(

1
𝛼
𝑄∗soft

(
𝑠𝑡𝑒 , 𝑎

′
𝑒

) )
𝑑𝑎′𝑒 . (3)

Thus the policy learning can be treated as the approximation to
the Boltzmann-like distribution of optimal 𝑄 function. Taking the
soft 𝑄-Learning (SQL) [27] method as an example, it provides the
optimal 𝑄 is the fixed point of soft Bellman backup, which satisfies
the soft Bellman equation

𝑄∗soft
(
𝑠𝑡𝑒 , 𝑎

𝑡
𝑒

)
= 𝑟𝑡𝑒 + 𝛾E𝑠𝑡+1𝑒 ∼𝑝𝑠𝑒

[
𝑉 ∗soft

(
𝑠𝑡+1𝑒

)]
. (4)

Due to the infinite set of states and actions, it takes parameterized𝑄
and uses a function 𝜋 as an approximate sampler of Boltzmann-like
distribution of 𝑄 . Specifically, it updates 𝑄 and 𝜋 as:

min𝜃 𝐽𝑄 (𝜃 ) := E𝑠𝑡𝑒 ,𝑎𝑡𝑒 ,𝑟𝑡𝑒 ,𝑠𝑡+1𝑒 ∼𝐷

[
1
2

(
𝑟𝑡𝑒 +𝑉 𝜃

(
𝑠𝑡+1𝑒

)
−𝑄𝜃

(
𝑠𝑡𝑒 , 𝑎

𝑡
𝑒

) )2
]
,

min𝜙 𝐽𝜋
(
𝜙 ; 𝑠𝑡𝑒

)
:= KL

(
𝜋𝜙

(
·|𝑠𝑡𝑒

)
∥ exp

(
1
𝛼

(
𝑄𝜃

(
𝑠𝑡𝑒 , ·

)
−𝑉 𝜃 (𝑠𝑡𝑒 )

)))
,

(5)

where function 𝑉 𝜃 is denoted as

𝑉 𝜃
(
𝑠𝑡𝑒
)

:= 𝛼 logE𝑎′𝑒∼𝑞𝑎′𝑒

[
exp

(
1
𝛼
𝑄𝜃

(
𝑠𝑡𝑒 , 𝑎

′
𝑒

) )
/𝑞𝑎′𝑒 (𝑎

′
𝑒 )
]
, (6)

and 𝜃, 𝜃, 𝜙 denote the parameters of critic, target critic and policy
respectively; 𝑞𝑎′ is an arbitrary policy distribution. The policy dis-
tribution induced by the EBM (i.e., the Boltzmann-like distribution
of𝑄) under structured action spaces is highly multimodal, and sam-
pling from such a high-dimensional distribution is intractable. In
this paper, DPO introduces a powerful generative model, Generative
Flow Networks (GFlowNet), as the efficient diverse policies sampler.

2.2 Generative Flow Networks
Generative flow networks, which are trainable generative policies,
model the generation or sampling process of composite objects
𝑥 ∈ X by a sequence of discrete actions that incrementally modify a
partially constructed object (state). Note that action and state here
do not refer to the concepts in RL [99]. In this paper, we model
actions in RL problems with structured action spaces as states in
GFlowNet, and actions in GFlowNet correspond to the atomic actions
that compose structured actions. In other words, the composite
object 𝑥 generated by the GFlowNet is 𝑎𝑒 , andX is equivalent toA𝑒 .
The partially constructed object and corresponding action sequence
space can be represented by a directed acyclic graph (DAG, See the
DAG consisting of traffic lights and roads in Figure 2)𝐺 = (S𝑔,A𝑔),
where the subscript 𝑔 denotes the “GFlowNet”. The vertices in S𝑔
are states and the edges in A𝑔 are actions that modify one state
to another. The tails of incoming edges and the heads of outgoing
edges of a state are denoted as the parents and childrens, respectively.
The sampling process of the composite object 𝑎𝑒 starts from the
initial state 𝑠0

𝑔 and transits to the terminal state 𝑠𝑛𝑔 ∈ A𝑒 , which is
a state without outgoing edges, after 𝑛 ∈ (0,𝑇 ] steps and 𝑇 is the
maximum length. Note that the same terminal state may correspond
to multiple action sequences.

A complete trajectory is a state sequence from a initial state
to a terimal state 𝑠0

𝑔 → 𝑠1
𝑔 → . . . → 𝑠𝑛𝑔 , where each transi-

tion 𝑠𝑡𝑔 → 𝑠𝑡+1𝑔 is an action in A𝑔 . A trajectory flow is a unnor-
malized density or a non-negative function, 𝐹 : T → R≥0, on
the set of all complete trajectories T . The flow is called Markov-
ian if there exist distributions 𝑃𝐹 (· | 𝑠𝑔) over the children of
every non-terminal state 𝑠𝑔 and a constant 𝑍 , such that for any
complete trajectory 𝜏 we have 𝑃𝐹 (𝜏) = 𝐹 (𝜏)/𝑍 with 𝑃𝐹 (𝜏) =

𝑃𝐹

(
𝑠1
𝑔 | 𝑠0

𝑔

)
𝑃𝐹

(
𝑠2
𝑔 | 𝑠1

𝑔

)
. . . 𝑃𝐹

(
𝑠𝑛𝑔 | 𝑠𝑛−1

𝑔

)
. 𝑃𝐹

(
𝑠𝑡+1𝑔 | 𝑠𝑡𝑔

)
is called a

forward policy, which is used to sample the composite object𝑎𝑒 from
the density 𝐹 . 𝑃𝑇 (𝑎𝑒 ) then denotes the probability that a complete
trajectory sampled from 𝑃𝐹 terminates in 𝑎𝑒 .

The problem we are interested in is fitting a Markovian flow to
a fixed energy function on A𝑒 . Given an energy function E(𝑎𝑒 ) :=
− log𝑅(𝑎𝑒 ) and the associated non-negative reward function (again,
not a reward in RL) 𝑅𝑔 : A𝑒 → R≥0, one seeks a Markovian flow 𝐹

such that the likelihood of a complete trajectory sampled from 𝐹

terminating in a given 𝑎𝑒 is proportional to 𝑅𝑔 (𝑎𝑒 ), i.e., 𝑃𝑇 (𝑎𝑒 ) ∝
𝑅𝑔 (𝑎𝑒 ). This 𝐹 can be obtained by imposing the reward-matching
constraint: 𝑅𝑔 (𝑎𝑒 ) =

∑
𝜏=

(
𝑠0
𝑔→...→𝑠𝑛𝑔

)
,𝑠𝑛𝑔=𝑎𝑒

𝐹 (𝜏). The details of how

to parameterize a GFlowNet and train a Markovian flow 𝐹 that
satisfies the reward matching constraint will be explained soon.

3 DIVERSE POLICY OPTIMIZATION
This section proposes a simple and effective RL method, Diverse
Policy Optimization (DPO), to discover diverse policies in structured
action spaces. We follow the probabilistic reinforcement learning
(PRL) framework [40] to transform RL problems under stochas-
tic dynamics into variational inference problems on probabilistic
graphical models and model the policies of RL agents as EBMs. PRL
framework corresponds to a maximum entropy variant of reinforce-
ment learning or optimal control, where the optimal policy aims to
maximize the expected reward and maintain high entropy. Due to
the maximum entropy objective, some existing works [27, 28] have
proposed algorithms for low-dimensional continuous action spaces
to discover diverse policies based on this framework.

Our method is an instance of the maximum entropy actor-critic
algorithm in the PRL framework, which adopts a message-passing
approach and can produce lower-variance estimates. In addition, to
make the policy still scalable in the structured action space, we do
not use an explicit policy parameterization but fit only the message,
i.e., the 𝑄-value function, similar to soft 𝑄-learning [27]. Specifi-
cally, we opt for using general energy-based policies 𝜋 (𝑎𝑒 | 𝑠𝑒 ) ∝
exp (−E (𝑠𝑒 , 𝑎𝑒 )) , where E is an energy function. Furthermore, we
set E (𝑠𝑒 , 𝑎𝑒 ) = − 1

𝛼𝑄soft (𝑠𝑒 , 𝑎𝑒 ), then the optimal maximum en-
tropy policy is an EBM that satisfies Equation (2).

However, The action distribution induced by this EBM in a struc-
tured action space is highly multimodal, and sampling from such a
high-dimensional distribution is intractable. Fortunately, the com-
posability and local dependencies of the structured action space
make generative flow networks naturally suitable for efficiently
sampling diverse and high-quality policies from it. And we only
need to set the energy function that needs to be fitted by theMarkov-
ian flow 𝐹 (𝑎𝑒 ) (where the action 𝑎𝑒 corresponding to the composite
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Figure 2: A GFlowNet iteratively constructs an composite object, e.g., a traffic light network. 𝑠𝑡 represents the state of the
partially constructed object, 𝑎𝑡 represents the action taken by the GFLowNet to transition to state 𝑠𝑡+1 = 𝑇 (𝑠𝑡 , 𝑎𝑡 ). The GFlowNet
take a 3-lights traffic network as input and determines an action to take. This process repeats until an exit action is sampled
or maximum light number is achieved and the sample is complete.

object 𝑥 ) to be (−1/𝛼) ·𝑄soft (𝑠𝑒 , 𝑎𝑒 ), and its associated reward func-
tion𝑅𝑔 (𝑎𝑒 ) to be set to exp ((1/𝛼) ·𝑄soft (𝑠𝑒 , 𝑎𝑒 )), we can elegantly
introduce GFlowNet as an efficient and diverse sampler.

Nevertheless, the unreasonable part of the above modeling is
that there is no place left for the environment state 𝑠𝑒 in the input
of the Markovian flow and the reward function. The reason is that
𝜋 in the PRL framework is a conditional distribution, but GFlowNet
is an unconditional sampler. To this end, we will introduce a variant
of GFlowNet, namely reward-conditional GFlowNet, to model the
policy of RL agents, and details will be explained shortly.

Since in the PRL framework, with the update of the 𝑄soft, the
energy-based policy distribution is also constantly changing. DPO
adopts a joint training frameworkwhere the EBM and the GFlowNet
are optimized alternately, similar with [99]: The energy function
serves as the negative log-reward function for the GFlowNet, which
is trained with the trajectory balance [54] objective to sample from
the evolving energy-based policies. In contrast, the energy function
is trained with soft Bellman backup, where the GFlowNet provides
diverse samples. The schematic diagram of RL based on reward-
conditional GFlowNet as the agent’s policy and the joint training
framework are shown in Figure 3 and Algorithm 1.

In the following, we will explain the generation process of struc-
tured action, the parameterization and training of reward-conditional
GFlowNet, and its interleaved update with EBM, respectively.

3.1 Structured Action Generative Process
The framework of diverse policy optimization is introduced in
the previous section, and this section will describe the process
of generating structured actions based on the reward-conditional
GFlowNet. The local dependencies of structured actions indicate
that there may be two correlations between atomic actions: locally
physical and locally logical correlations. The former is a typical
graph, while the latter belongs to a typical set. For the unity of
the framework, this paper only considers the physical correlation
between atomic actions. It transforms the logical correlation into
the physical correlation without loss of generality.

Expressly, we assume that atomic actions with local logical cor-
relations have a fixed influence range with a radius 𝑑 in Euclidean
space. An atomic action can then establish a physical correlation
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Figure 3: The schematic diagram of RL based on GFlowNet
as the agent’s policy and the joint training framework.

with others within its influence range. Of course, other types of
topologies, such as fully connected, star, hierarchical, etc., can also
be used in addition to adjacency topologies. This paper adopts the
adjacency topology to make a trade-off between efficiency and per-
formance. The experimental results also show that the algorithm
performance is not sensitive to the influence radius 𝑑 .

In the structured action space, the action consists of 𝑁 atomic
actions in 𝐾-dimensional discrete space, i.e., 𝑎𝑒 ∈ A𝑒 ≜ [𝐾]𝑁 ,
where [𝐾] ≜ {0, . . . , 𝐾 − 1}. 𝑎𝑒 could be a phase configuration of
𝑁 traffic lights, and each traffic light contains 𝐾 phases or the joint
action of 𝑁 predators, and each predator can go in 𝐾 directions.
We model the generation or sampling of vectors inA𝑒 by a reward-
conditional GFlowNet. The state space of GFlowNet is denoted as
S𝑔 , and we have S𝑔 ≜

{(
𝑠1
𝑔 , . . . , 𝑠

𝑁
𝑔

)
| 𝑠𝑛𝑔 ∈ [𝐾] ∪ ⊘, 𝑛 = 1, . . . , 𝑁

}
,

where the void symbol ⊘ represents a yet unspecified atomic action.
The DAG structure on S𝑔 is the 𝑁 -th Cartesian power of the DAG
with states [𝐾] ∪ ⊘, where [𝐾] are children of ⊘. Concretely, the



children of a state 𝑠𝑔 =
(
𝑠1
𝑔 , . . . , 𝑠

𝑁
𝑔

)
are vectors that can be obtained

from 𝑠𝑔 by changing any one atomic action s𝑛g from ⊘ to [𝐾], and
its parents are states that can be obtained by changing a single
atomic action 𝑠𝑛𝑔 ∈ [𝐾] to ⊘.

Moreover, A𝑒 is naturally identified with {𝑠𝑔 ∈ S𝑔 : |𝑠𝑔 | = 𝐷}
where |𝑠𝑔 | ≜ #

{
𝑠𝑛𝑔 | 𝑠𝑛𝑔 ∈ [𝐾], 𝑛 = 1, . . . , 𝑁

}
. Similarly, the initial

state is denoted as 𝑠0
𝑔 ≜ (⊘, ⊘, . . . , ⊘), which means that the reward-

conditional GFlowNet-based RL policy needs to take 𝑁 steps to
sample a structured action, i.e., constructing a trajectory from 𝑠0

𝑔 to
𝑎𝑒 ∈ A𝑒 . The forward policy 𝑃𝐹 |𝑒 (·|𝑠𝑔, 𝑠𝑒 ) of a reward-conditional
GFlowNet (will explained soon), extends from §2.2, is a distribution
over all paths to select a position with a void atomic action in 𝑠𝑔
and a value 𝑘 ∈ [𝐾] to assign to this atomic action based on the
environmental state 𝑠𝑒 ∈ S𝑒 . Thus the action space for a state 𝑠𝑔
has size 𝐾 (𝑁 − |𝑠𝑔 |). Since 𝑘 ≪ 𝑁 , the action space of the forward
policy (same as the backward policy below) grows linearly with
the atomic actions increase, so DPO has a good scalability. Corre-
spondingly, the backward policy 𝑃𝐵 |𝑒 (·|𝑠𝑔, 𝑠𝑒 ) is a distribution over
the |𝑠𝑔 | paths to select a position with a nonvoid atomic action in 𝑠𝑔 .

More efficient generation. As we mentioned earlier, as an amor-
tized version of MCMC, GFlowNets can alleviate the mix-moding
problem [34, 69] of the MCMC method, thereby improving the sam-
pling efficiency of diverse samples. However, if the two modes are
close enough, the MCMC method will have higher sampling effi-
ciency because it only perturbs the previous sample slightly. How-
ever, GFlowNets, for this case, need to rebuild the entire structured
action sequentially, although only a minimal number of atomic ac-
tions have changed. To this end, we introduce a small trick: adding
a termination action in the action space. GFlowNets are trained to
successfully sample from two close modes by deciding to terminate
at different modes at different runs. Since the physical meaning
of the termination action is quite different from other actions, we
use a different output head to predict it separately, as shown in
Figure 4. Once the forward policy 𝑃𝐹 |𝑒 (·|𝑠𝑔, 𝑠𝑒 ) decides to take the
termination action, the output of the other head will be ignored.
Experiments show that this small trick can significantly improve
the learning efficiency of the algorithm in some tasks.

3.2 GFlowNet Parameterization
After showing how to sample structured actions using theGFlowNet,
this section elaborates on how to parameterize it and train a Mar-
kovian flow 𝐹 that satisfies the reward matching constraint. As
stated earlier, if we take the form of the GFlowNet in §2.2, there
will be no place for the environment state 𝑠𝑒 in the forward policy
𝑃𝐹 as well as in the backward policy 𝑃𝐵 . Thus, we use an extended
version of flow networks by conditioning each component on some
information, which is external to the flow network but influences
the terminating flows. In our setting, the external information is
RL’s environmental state 𝑠𝑒 . Since the external information 𝑠𝑒 af-
fects the reward function 𝑅𝑔 in §2.2, this conditional GFlowNet is
also called reward-conditional GFlowNet [5, Definition 29].

Since reward-conditional GFlowNets are defined using the same
components as the unconditional one, they inherit from all the
properties of the GFlowNet for all DAGs 𝐺𝑒 = (S𝑔,A𝑔,S𝑒 ) and

flow functions 𝐹𝑒 : T × S𝑒 → R≥0, where 𝑒 represents the “en-
vironment” in RL again. In particular, we can directly extend no-
tions of §2.2 to reward-conditional GFlowNets with forward pol-
icy 𝑃𝐹 |𝑒 (·|𝑠𝑔, 𝑠𝑒 ), backward policy 𝑃𝐵 |𝑒 (·|𝑠𝑔, 𝑠𝑒 ), energy function
E(𝑎𝑒 |𝑒) := − log𝑅 (𝑔|𝑒) (𝑎𝑒 |𝑠𝑒 ) and the associated non-negative re-
ward function 𝑅𝑔 |𝑒 : A𝑒 × S𝑒 → R≥0; The only difference is that
now every term explicitly depends of the conditioning variable,
environmental state 𝑠𝑒 ∈ S𝑒 under the RL context.

In our experiments, we parameterize the forward and backward
policy with deep neural networks 𝑃𝐹 |𝑒 (𝜃𝐹 ) and 𝑃𝐵 |𝑒 (𝜃𝐵) respec-
tively, and for convenience, we omit the input without introducing
ambiguity. As 𝑃𝐹 incrementally builds structured actions, its ac-
tion space gradually decreases, similar to the traveling salesman
problem (TSP) [64]. Considering the effectiveness of the pointer net-
work [84] in dealing with such problems, we introduce the modified
graph pointer network (GPN, [49]) as the forward and backward
policy (see Figure 2) to further model the structured information of
the action space. The forward process of the modified GPN can be
divided into the following three stages:
Environmental state encoding: In this stage, the 𝑖-th row of the
adjency matrix ℓ𝑖 and local observed information 𝑜𝑖 of each atomic
action are concatenated as 𝑠𝑖 |𝑒 = [ℓ𝑖 ∥𝑜𝑖 ], and then 𝑠𝑖 |𝑒 is embedded
into a higher dimensional vector 𝑠𝑖 |𝑒 ∈ R𝑑 by a shared feed-forward
network, where 𝑑 is the hidden dimension. The context information
is then obtained by encoding all atomic actions’ embeddings 𝑠𝑒 via a
graph neural network (GNN, [37, 92]), where 𝑠𝑒 = [𝑠⊤1 |𝑒 , . . . , 𝑠

⊤
𝑁 |𝑒 ]

⊤.
Each layer of the GNN is expressed as:

𝑠ℓ
𝑖 |𝑒 = 𝛾𝑠

ℓ−1
𝑖 |𝑒 Θ + (1 − 𝛾)𝜙𝜃

(
1

|N (𝑖) |

{
𝑠ℓ−1
𝑗 |𝑒

}
𝑗 ∈N(𝑖)∪{𝑖 }

)
, (7)

where 𝑠ℓ
𝑖 |𝑒 ∈ R

𝑑ℓ is the ℓ-th layer variable with ℓ ∈ {1, . . . , 𝐿},
𝑠0
𝑖 |𝑒 = 𝑠𝑖 |𝑒 , 𝛾 is a trainable parameter, Θ ∈ R𝑑ℓ−1×𝑑ℓ is a trainable
weight matrix,N(𝑖) is the adjacency set of atomic action 𝑖 , and 𝜙𝜃 :
R𝑑ℓ−1 → R𝑑ℓ is the aggregation function [37], which is represented
by a neural network in our experiments.
GFlowNet state encoding: In this stage, we use the vectors point-
ing from the newly added atomic action to all others as the embed-
ding of 𝑠𝑔 , which is similar with Ma et al. [49]. Specifically, for the

newly added atomic action 𝑠𝑖 |𝑒 , suppose 𝑠E |i =
[
𝑠⊤
𝑖 |𝑒 , . . . , 𝑠

⊤
𝑖 |𝑒

]⊤
∈

R𝑁×𝑑 is a matrix with identical rows 𝑠1 |𝑒 . We define 𝑠𝑔 = 𝑠𝐿𝑖 |𝑒−𝑠E |i =[
𝑠⊤
𝑖 |𝑔, . . . , 𝑠

⊤
𝑁 |𝑔

]⊤
∈ R𝑁×𝑑 . Then 𝑠𝑔 is passed into the GNN again

and the embedding of each atomic action after GFlowNet state
encoding is denoted as 𝑠𝐿

𝑖 |𝑔 .
Atomic action selection: The atomic action selector is based on
the Linear Transformer [35], which has the advantage of not suffer-
ing from the quadratic scaling in the input size. This architecture
relies on a linearized attention mechanism, defined as

𝑄 = 𝑠𝐿𝑔𝑊𝑄 𝐾 = 𝑠𝐿𝑔𝑊𝐾 𝑉 = 𝑠𝐿𝑔𝑊𝑉 ,

LinAttn𝑘 (𝑠𝐿𝑔 ) =
∑𝑁
𝑗=1

(
𝜓 (𝑄𝑘 )⊤𝜓

(
𝐾𝑗

) )
𝑉𝑗∑𝑁

𝑗=1𝜓 (𝑄𝑘 )
⊤𝜓

(
𝐾𝑗

) ,
(8)

where 𝜓 (·) is a non-linear feature map, and 𝑄,𝐾 , and 𝑉 are lin-
ear transformations of 𝑠𝐿𝑔 corresponding to the queries, keys, and
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Figure 4: The parameterized forward and backward policy based on the modified graph pointer network.

values respectively, as is standard with Transformers. The pointer
vector outputted by the Linear Transformer is first masked by the
mask m associated with the physical dependencies in structured
action space and is then passed to a softmax layer to generate a
distribution over the next candidate intersections. Similar to pointer
networks [84], the masked pointer vector u𝑖 is defined as:

u( 𝑗)
𝑖

=

{
u( 𝑗)
𝑖

if 𝑗 ≠ 𝜎 (𝑘),∀𝑘 < 𝑗,

−∞ otherwise,
(9)

where 𝜎 (𝑘) denotes 𝑘-th processed atomic action and u( 𝑗)
𝑖

is the
𝑗-th entry of the vector u𝑖 .

3.3 Reward-Conditional GFlowNet Training
After parameterizing the GFlowNet, we now describe how reward-
conditional GFlowNets could be trained toward matching a given
conditional reward. Recall from §2.2, §3 and §3.1, given a non-
negtive conditional reward function 𝑅𝑔 |𝑒 : A𝑒 × S𝑒 → R≥0, a
reward-conditional GFlowNet can be trained so that its terminating
probability distribution matches the associated energy-based model.
To be precise, the marginal likelihood that a trajectory sampled
from the forward policy 𝑃𝐹 |𝑒 (·|𝑠𝑔, 𝑠𝑒 ) terminates at a given struc-
tured action is propotional to the action’s soft 𝑄 value 𝑃𝑇 (𝑎𝑒 |𝑠𝑒 ) ∝
exp ((1/𝛼) ·𝑄soft (𝑠𝑒 , 𝑎𝑒 )), where 𝑎𝑒 ∈ A𝑒 and 𝑠𝑒 ∈ S𝑒 .

To train the parameters 𝜃𝐹 and 𝜃𝐵 of the reward-conditional
GFlowNet, we use the trajectory balance objective [54] that opti-
mizes the following objective along complete trajectories 𝜏 = (𝑠0

𝑔 →
𝑠1
𝑔 → . . .→ . . .→ 𝑠𝑛𝑔 ):

LΘ (𝜏 |𝑠𝑒 ) =
log

𝑍 (𝑠𝑒 ;𝜃𝑍 )
∏𝑛−1
𝑡=0 𝑃𝐹

(
𝑠𝑡+1𝑔 |𝑠𝑡𝑔, 𝑠𝑒 ;𝜃𝐹

)
𝑅

(
𝑠𝑛𝑔 |𝑠𝑒

) ∏𝑛−1
𝑡=0 𝑃𝐵

(
𝑠𝑡𝑔 |𝑠𝑡+1𝑔 , 𝑠𝑒 ;𝜃𝐵

) 
2

, (10)

whereΘ ≜ {𝜃𝐹 , 𝜃𝐵, 𝜃𝑍 }. The scalar function 𝑍 (·) is parametrized in
the log domain, as suggested by Malkin et al. [54]. With the trajec-
tory balance objective, we train the reward-conditional GFlowNet
with stochastic gradientE𝜏∼𝜋Θ (𝜏 |𝑠𝑒 ) [∇ΘLΘ (𝜏 |𝑠𝑒 )] with some train-
ing trajectory distribution 𝜋Θ (𝜏). Akin to RL settings, we take 𝜋Θ
to be the distribution over trajectories sampled from a tempered
version of current forward policy 𝑃𝐹 |𝑒 (·|𝑠𝑔, 𝑠𝑒 ). That is, 𝜏 is sampled
with s𝑡+1𝑔 ∼ 𝑃𝐹 |𝑒 (·|𝑠𝑡𝑔, 𝑠𝑒 ) starting from 𝑠0

𝑒 , mixed with a uniform
action policy to ensure 𝜋Θ has full support.

Learning about total flow𝑍 . Experiments show that learning the
scalar function 𝑍 (·) end-to-end is very difficult. Since 𝑍 represents
the total flow in the entire flow network, many samples are required

for an accurate estimation. Unlike the original work of trajectory
balance [54], in our setting, the scalar function 𝑍 needs to condi-
tion on the external environmental state 𝑠𝑒 thus has higher sample
complexity. Interestingly, since the target EBM of GFlowNets is
derived from the PRL framework in our method, 𝑍 has an addi-
tional physical meaning, i.e., the soft value function 𝑉 ∗soft (·) in §2.1.
Since the soft value function is dependent on the soft 𝑄 value, 𝑍
can be updated by a mechanism similar to the bootstrap learning
adopted by RL, thereby improving the sample efficiency. To this
end, in addition to end-to-end training of 𝑍 using Equation (10),
we estimate 𝑉 ∗soft (·) in the same way as in Haarnoja et al. [27] and
fit 𝑍 to it. The experimental results show that this form of mixed
gradient update can improve the learning efficiency of Z.

3.4 Joint Training with EBM
Reward-conditional GFlowNets’ training relies on a given func-
tion 𝑅𝑔 |𝑒 (𝑎𝑒 |𝑠𝑔, 𝑠𝑒 ) to provide reward signals. However, in the PRL
framework, the energy-based policy distribution is also constantly
changing with the update of the soft Q function. Therefore, we
propose a joint training framework (Algorithm 1), where the EBM
and the reward-conditional GFlowNet are optimized alternately:

(1) GFlowNet updating step: the soft 𝑄 function serves as the
reward function for the GFlowNet, which is trained with the
trajectory balance objective to sample from the evolving EBM;

(2) EBM updating step: the EBM is trained with soft 𝑄 itera-
tion [27, §3.1] where the GFlowNet provides diverse samples.

Moreover, again inspired by soft 𝑄-learning [27], we find it advan-
tageous to evaluate the forward policy, backward policy and total
flow function in (10) with a separate target network, where the
parameters 𝜃𝐹 , 𝜃𝐵 and 𝜃𝑍 are updated softly [44].

4 EXPERIMENTS
In this section, we will empirically validate DPO on two RL prob-
lems with structured action space, which include ATSC tasks [2]
where atomic actions have physical local dependencies; and more
generally, Battle scenarios [102] where atomic actions have logical
local dependencies (see Appendix for more environment details). It
is worth noting that we did not use the population diversity (PD)
proposed by Parker-Holder et al. [65] or the modified PD proposed
by Zhou et al. [103] as one of the evaluation metrics. In our ex-
periments, we find that due to the high dimensionality and local
dependencies of structured actions, PD, a locality indicator, cannot
well reflect the diversity of policies. Therefore, we evaluate different
global metrics for different tasks to verify the diversity.



Algorithm 1 Joint Training Framework of DPO

1: {𝜃𝑄 , 𝜃𝐹 , 𝜃𝐵, 𝜃𝑍 } ∼ some initialization distributions, assign tar-
get parameters {𝜃𝑄 , 𝜃𝐹 , 𝜃𝐵, 𝜃𝑍 }, D ← empty replay buffer;

2: for each epoch until some convergence conditions do
3: for each timestep 𝑡 until the maximum limitation do
4: Sample an structured action 𝑎𝑡𝑒 via 𝑃𝐹 |𝑒 (·|·, 𝑠𝑡𝑒 ;𝜃𝐹 );
5: Save the new experience: D ← D ∪

{(
𝑠𝑡𝑒 , 𝑎

𝑡
𝑒 , 𝑟

𝑡
𝑒 , 𝑠

𝑡+1
𝑒

)}
;

6: Sample a minibatch: {(𝑠 (𝑖)𝑒 , 𝑎
(𝑖)
𝑒 , 𝑟

(𝑖)
𝑒 , 𝑠 ′𝑒

(𝑖) )}𝑁
𝑖=0 ∼ D.

7: EBM updating step:
8: Update 𝜃𝑄 according to computed empirical gradient

in (5) and empirical soft values in (6);
9: GFlowNet updating step:
10: Update {𝜃𝐹 , 𝜃𝐵, 𝜃𝑍 } with computed empirical gradient

of (10), update 𝜃𝑍 with MSE loss with computed empirical
soft values additionally;

11: Update target parameters similar with Lillicrap et al. [44].

4.1 Adaptive Signal Traffic Control
We choose the following algorithms as baselines, mainly including
the state-of-the-art methods for the ASTC task and for encouraging
policy diversity:Max-Pressure control (MP) where the phase com-
bination with the maximal joint pressure is enabled as described
in [9];MPLight-implementation is based on the FRAP open source
implementation [101] along with the ChainerRL [22] DQN imple-
mentation and pressure sensing; DvD [65] is a population-based
RL method for effective diversity; SQL [27] method is the skeleton
of the proposed DPO, which can obtain diverse policies in the low-
dimensional continuous action space; Recent proposedRSPO [103]
transforms the problem of seeking diversity policies into a con-
strained Markov decision process.

Table 1: Performance (↓) on the ATSC benchmark.

MP Ing. Reg. Col. Reg. DvD Ing. Reg. Col. Reg.
Avg. Delay 59.64 22.06 Avg. Delay 73.22 55.91
Avg. Trip Time 197.23 86.02 Avg. Trip Time 212.81 115.54
Avg. Wait 20.19 5.46 Avg. Wait 31.36 28.35
Avg. Queue 0.8 0.38 Avg. Queue 1.42 2.28
SQL Ing. Reg. Col. Reg. RSPO Ing. Reg. Col. Reg.
Avg. Delay 67.65 58.32 Avg. Delay 90.42 57.28
Avg. Trip Time 205.44 116.29 Avg. Trip Time 226.5 120.53
Avg. Wait 26.45 30.01 Avg. Wait 44.16 28.19
Avg. Queue 1.15 2.06 Avg. Queue 1.74 2.59
MPLight Ing. Reg. Col. Reg. DPO Ing. Reg. Col. Reg.
Avg. Delay 78.16 60.42 Avg. Delay 57.2 20.28
Avg. Trip Time 215.72 123.93 Avg. Trip Time 192.75 81.42
Avg. Wait 34.57 30.34 Avg. Wait 18.26 4.77
Avg. Queue 1.48 2.33 Avg. Queue 0.65 0.32
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Figure 5: Learning curves of decay (↓) on the ATSC.

From the experimental results in Table 1 and Figure 5, it can
be seen that DPO achieves state-of-the-art (SOTA) performance
and convergence speed on two coordinated control tasks in TAPAS
Cologne and InTAS scenarios. It is worth noting that classical MP
methods based on heuristic rules and expert knowledge also show
good results. DPO can outperform the MP method through a rein-
forcement learning mechanism, showing its superiority in solving
the ATSC problem. While among the three algorithms that encour-
age policy diversity, the DvD performs the worst, which we believe
is due to the limitations of how it computes the distance between
two policies on complex problems. The other two algorithms, SQL
and RSPO, can show near-SOTA performance on small-scale prob-
lems, i.e., the TAPAS Cologne scenario where a structured action
consists of 8 atomic actions. However, in the larger-scale InTAS
scenario, its performance drops sharply, which shows that existing
algorithms that encourage policy diversity have certain limitations
when dealing with structured action spaces.
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Figure 6: Comparison of policy diversity between DPO and
RSPO under the ATSC benchmark. Different colors repre-
sent different commute times.

Figure 6 shows the comparison of the policy diversity between
RSPO and DPO (see the appendix for more results). We ignore the
atomic action level, that is, the diversity of each traffic light’s phase
selection strategy, but the diversity of the entire road network’s traf-
fic control strategy. To this end, we calculate the average commute
time of the main road under multiple random seeds for different
algorithms in different scenarios. Furthermore, for visualization
convenience, we normalized each algorithm separately. Red indi-
cates longer commute time; otherwise, it is shown in blue. As seen
from the figure, DPO learns policies with sufficient diversity in
structured action spaces of different scales, but RSPO only shows
some effect in small-scale tasks.



4.2 Battle Scenario
In the Battle scenario, the atomic action is each agent’s action,
and we transform the logical correlation between each agent into
the physical correlation without loss of generality. Expressly, we
assume that atomic actions with local logical correlations have a
fixed influence range with a radius 𝑑 = 4 in Euclidean space. In this
benchmark, we additionally select IDQN, the built-in algorithm in
the MAgent, andMFQ [93], the state-of-the-art algorithm on the
Battle as baselines.
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agent reward (↑) of 50 runs onBattleGame. Results compares
the average agent number of blue army killed by red army
(left part of each figure) and the average individual rewards
of each agent (right part of each figure) respectively.

We first train the IDQN in a self-play way and the blue agent
loads the checkpoint and fixes the model parameters. The red agent
is then trained with different algorithms, and the final result is
shown in Figure 7. It is worth noting that DvD, SQL, and RSPO are
less scalable. So in the Battle scenario, we combine independent
learning to obtain I-DvD, I-SQL, and I-RSPO variants. Independent
learning does not constrain the algorithm’s performance, while the
IDQN algorithm also shows promising results. As seen from the
figure, the three algorithms that encourage policy diversity do not
show good results in large-scale structured action spaces, while
DPO can still stably approach the performance of SOTA.

Figure 8 shows the diversity of policies between I-RSPO and
DPO in the early and middle stages of the game (see appendix
for more results). As seen from the figure, the policies learned by
DPO show a variety of deployment strategies in the early stage;
in the middle stage, the enemy can be surrounded by different
formations to maximize the attack power. Although I-RSPO based
on independent learning shows a specific diversity at the individual
level, it is not easy to generate different policies as a whole.

Diverse policies are more difficult to be exploited by opponents in
competitive scenarios and can better adapt to changes in opponents’
policies. In order to verify the above point, we let the red agents
trained based on different algorithms compete against each other
and count the average winning rate. The results are shown in
Figure 9. As seen from the figure, DPO shows good robustness
against different opponents.

5 CLOSING REMARKS
In this paper, we aim to seek diverse policies in an under-explored
setting, namely RL tasks with structured action spaces with the com-
posability and local dependencies. The complex action structure,
non-uniform reward landscape, and subtle hyperparameter tun-
ing due to the structured actions prevent existing methods from
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Figure 8: Comparison of policy diversity between DPO and
RSPO under the early and middle stages of the Battle.
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Figure 9: The heatmap of the (Left) win ratio (↑) and (Right)
average steps to win (↓) amongDPO and others of the testing
phase of the Battle benchmark.

scaling well. We propose a simple and effective method, Diverse
Policy Optimization (DPO), to model the policies in structured action
space as the energy-based models by following the probabilistic
RL framework. DPO adopts a joint training framework, where the
energy-based model, and the generative flow network, which is
introduced as the efficient, diverse EBM-based policy sampler, are
optimized alternately: The energy function serves as the negative
log-reward function for the GFlowNet, which is trained with the
trajectory balance objective to sample from the evolving energy-
based policies. In contrast, the energy function is trained with soft
Bellman backup, where the GFlowNet provides diverse samples.
Experiments demonstrate that the proposed DPO is both general
and practical across structured action spaces with physical and,
more generally, logical local dependencies.
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Supplementary Material for
Diverse Policy Optimization for Structured Action Space

A RELATEDWORKS
To the best of our knowledge, existing work on reinforcement learning rarely pursues both the quality as well as the diversity of optimal
policies in sequential decision problems with large-scale, structured action spaces. Therefore, this section will briefly review the work in
reinforcement learning focusing on the diversity of solutions and dealing with sequential decision problems with large-scale or structured
action spaces, respectively.

A.1 Diverse Solutions in RL
Most of the literature on this problem has been done in the field of neuroevolution methods inspired by Quality-Diversity (QD), seeking
to maximize the reward of a policy through approaches strongly motivated by natural biological processes. They typically work by
perturbing a policy and either computing a gradient (as in Evolution Strategies) or selecting the top-performing perturbations (as in Genetic
Algorithms). Neuroevolution methods comprise two leading families of algorithms: MAP-Elites [12, 60] and novelty search with local
competition [39]. These methods typically maintain a collection of policies and adapt it using evolutionary algorithms to balance the QD
trade-off [16, 24, 45, 62, 65, 70].

In another part of the work, intrinsic rewards have been used for learning diversity in terms of the discriminability of different trajectory-
specific quantities [1, 18, 25, 26, 29, 72, 97]. Thesemethods are similar in principle to novelty searchwithout a reward signal but instead focus on
diversity in behaviors defined by the states they visit. Other work implicitly induces diversity to learn policies that maximize the set robustness
to the worst-possible reward [38, 95], or uses diversity as a regularizer when maximizing the extrinsic reward [23, 40, 55, 73, 100]. There is also
a small body of work that transforms the problem of seeking diversity policies into a Constrained Markov Decision Process [15, 75, 98, 103].

In addition to getting policies with diversity in RL, some related work is encouraging policy diversity. In imitation learning, the problem
of imitating diverse behaviors from expert demonstrations has been addressed in previous studies [43, 57, 74, 87]. In these methods, diverse
behaviors are encoded in latent variables. However, these imitation learning methods assume the availability of observations of diverse
behaviors performed by experts. Encouraging agents to diversify their exploration in the early stages of RL has also received significant
attention in recent years [11, 32, 36, 46, 53, 66]. The diversity of policies in multi-agent reinforcement learning (MARL) is also crucial to
improve the agent’s robustness and their ability to zero-shot cooperate [48, 61, 77, 94].

A.2 Structured or Large-Scale Actions
A large part of the current work on policy optimization for structured action spaces addresses one particular class of problems, namely,
parametric action space problems, in which the action space has a particular master-slave structure. The difficulty in solving the parameterized
action space lies in the heterogeneity of discrete master actions and continuous slave actions. Current methods either learn a continuous
parameter policy for each discrete action [7, 56, 91]; or discrete actions are output in parallel with continuous actions and employ gradient
post-processing techniques or improved value function networks to solve the master-slave action correspondence problem [19, 30]; or first,
generate discrete actions, then generate continuous parameters based on that action and design sophisticated gradient update schemes for
end-to-end training [6, 13, 88].

In contrast, there are fewer algorithms oriented towards structured action spaces in general, and in the tasks solved by these algorithms,
there are no explicit dependencies between atomic actions. Thus, existing approaches are either based on the assumption of independence of
the decomposed sub-actions [51, 78]; or they are based on the inductive bias to assign a conditional dependency structure to the decomposed
sub-actions and pick up the actions one by one through an autoregressive form based on recurrent neural networks, which are finally spliced
into the original actions [58, 68]. There are also a series of approaches that assume a game relationship between the decomposed sub-actions,
model each sub-action as an agent, and use MARL methods to solve them [21, 42, 52, 83, 93]. However, the field of MARL is still in the
preliminary exploration stage, and numerous theoretical problems remain unsolved. Thus modeling as a multi-agent problem will introduce
more new challenges.

To address the curse of dimensionality caused by (non-structured) large-scale action spaces, existing methods are based on the idea of
reshaping the action space and thus reducing the dimensionality, e.g., some works perform dimensionality reduction by clustering the
actions [8, 17, 31, 79, 85]. However, these approaches require the assumption that actions have dense semantic information, consist of natural
language, and cannot be applied to general high-dimensional tasks. Some works propose solutions for generic large-scale action spaces, such
as dividing the action space by using multiple hierarchical policies similar to a tree structure to reduce the action dimension of each layer of
the policy [10, 14, 96]; or gradually increasing the action space employing curriculum learning so that the policy only needs to be optimized
in a smaller action space in the early stage [20].



B TRAINING DETAILS
B.1 Environments
Adaptive Signal Traffic Control. This benchmark based on 2 well-established Simulation of Urban Mobility traffic simulator (SUMO) [3]
scenarios, namely, “TAPAS Cologne” (8 lights) [82] and “InTAS” (21 lights) [47], which describe traffic within a real-world city, Cologne
and Ingolstadt (Germany) respectively. There are 3 kinds of tasks in the original work [2], namely (a) controlling a single intersection, (b)
controlling multiple intersections along an arterial corridor, and (c) coordinated control of multiple intersections within a congested area.
We select the most complex coordinated control task (c) to demonstrate the advantage of DPO in finding diverse policies. In the coordinated
control task, the atomic action is the selection of the signal light’s phase at each intersection, and the physical dependencies are the roads
between the intersections. The road network is shown in Figure 10.

Figure 10: The road networks of coordinated control task [2] for TAPAS Cologne [82] and InTAS [47] respectively.

Battle Scenario. This benchmark is based on the MAgent [102], a research platform for many-agent reinforcement learning. We selected
the competitive task, Battle, as the simulation environment to highlight the advantages of the diverse policies. In Battle, 𝑛 agents learn to
fight against 𝑛 enemies who have superior abilities than agents. (Figure 11). As the enemy’s hit point is more than a single agent’s damage,
agents must continuously cooperate to kill the enemy.

Figure 11: The snapshot of Battle in MAgent platform [102].

In our experiments on the ATSC and Battle benchmarks, all the environment settings, such as the definition of state, the definition of
reward, etc., as well as the evaluation metrics, are kept the same as in Ault and Sharon [2]2 and Terry et al. [80]3 respectively.

B.2 Methods
Random seeds. Except as mentioned in the text, all experiments were run for 5 random seeds each. Graphs show the average (solid line)
and std dev (shaded) performance over random seed throughout training. In the ATSC benchmark, the tables show the empirical mean of the
relevant evaluation metrics.

Hyperparameters. Table 2 shows the tuning range of hyperparameters used for all the experiments of our method and baselines. For all
hyperparameters that need to be tuned, we use the Bayesian hyperparameter search method in the wandb platform4 for parallel tuning.
During the parallel tuning, the platform will create a probabilistic model of a metric score as a function of the hyperparameters, and choose
parameters with high probability of improving the metric. Bayesian hyperparameter search method uses a Gaussian Process to model the
2https://github.com/Pi-Star-Lab/RESCO .
3https://github.com/Farama-Foundation/PettingZoo.
4https://wandb.ai/

https://github.com/Pi-Star-Lab/RESCO
https://github.com/Farama-Foundation/PettingZoo
https://wandb.ai/


relationship between the parameters and the model metric and chooses parameters to optimize the probability of improvement.

Hardware. The hardwares used in the experiment are a server with 128 cores, 128G memory and 4 NVIDIA GeForce RTX 1080Ti graphics
cards with 11G video memory, and a server with 128 cores, 256G memory and 2 NVIDIA GeForce RTX 3090 graphics cards with 24G video
memory.

The Code of Baselines. The code and license of baselines are shown in following list:
• IDQN [102]: https://github.com/geek-ai/MAgent, MIT License;
• MFQ [93]: https://github.com/mlii/mfrl, MIT License;
• Max-Pressure [9]: https://github.com/Pi-Star-Lab/RESCO, No License;
• MPLight [101]: https://github.com/Pi-Star-Lab/RESCO, No License;
• DvD [65]: https://github.com/jparkerholder/DvD_ES, Apache-2.0 license;
• SQL [27]: https://github.com/haarnoja/softqlearning, No License;
• RSPO [103]: https://github.com/footoredo/rspo-iclr-2022, No License.

Table 2: Hyperparameters of all methods used in experiments.

Name Tuning Range

number of GPN layers 3
hidden units of GPN {64, 128, 256}
dropout of GPN layers 0.6
dropout of GPN attention layer 0.5
alpha of GPN (0, 1)
number of heads of GPN attention layer 4
use residual in GPN True
norm layer in GPN {Layernorm, Batchnorm}
number of GAT layers (soft-Q) 3
hidden units of GAT (soft-Q) {64, 128, 256}
dropout of GAT layers (soft-Q) 0.6
dropout of GAT attention layer (soft-Q) 0.5
alpha of GAT (soft-Q) (0, 1)
number of heads of GAT attention layer (soft-Q) 4
use residual in GAT (soft-Q) True
norm layer in GAT (soft-Q) {Layernorm, Batchnorm}
learning rate of GPN (1e-5, 1e-3)
learning rate of 𝑍 (1e-3, 1e-1)
learning rate of GAT (1e-5, 1e-3)
Optimizers AdamW
Replay Buffer Size 1e6
𝛾 (0.9, 0.99)
replay start size 32
minibatch size 32
max gradient norm 20
initial temperature (soft-Q) 1.0
temperature learning rate (1e-5, 3e-4)
soft update coefficient (2e-3, 5e-1)
GPN update ratio (2, 6)
number of GPN updates (1, 10)

(a) DPO.

Name Tuning Range

learning rate (IDQN) 1e-3
training frequency (IDQN) 5
batch size (IDQN) 256
target update (IDQN) 1200
memory size (IDQN) 2e20
learning rate (IDQN) 1e-4
𝛾 (IDQN) 0.99
learning rate (MFQ) 1e-4
exploration decay (MFQ) 1.0→ 0.05, 2000
𝛾 (MFQ) 0.95
batch size (MFQ) 128
memory size (MFQ) 5e5
batch size (MPLight) 32
𝛾 (MPLight) 0.99
exploration decay (MPLight) 1.0→ 0.0, 220
target update (MPLight) 500
demand shape (MPLight) 1
𝜎 (DvD) (1e-4, 1e-2)
𝜂 (DvD) (1e-4, 1e-2)
hidden units (DvD) {32, 64, 128}
ES-sensings (DvD) {200, 300, 400}
𝐾 (SQL) (32, 100)
𝑀 (SQL) (32, 100)
𝐾𝑉 (SQL) 50
𝑎𝑙𝑝ℎ𝑎 (RSPO) (0.1, 1.5)
𝜆𝑖𝑛𝑡B (RSPO) (0, 10)
𝜆𝑖𝑛𝑡R (RSPO) (0, 1)
Initial learning rate (RSPO) (1e-4, 1e-3)
Batch size (RSPO) {512, 1600, 6400}
PPO epochs (RSPO) (1, 10)

(b) Baselines.

Learning curves are smoothed by the exponential moving average technique with coefficient 0.6. Source code is available at this anonymous
code repository5, which is based on [49]6 and Zhang et al. [99]7.

5https://anonymous.4open.science/r/DPO.
6https://github.com/qiang-ma/graph-pointer-network.
7https://github.com/GFNOrg/EB_GFN.
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https://github.com/haarnoja/softqlearning
https://github.com/footoredo/rspo-iclr-2022
https://anonymous.4open.science/r/DPO
https://github.com/qiang-ma/graph-pointer-network
https://github.com/GFNOrg/EB_GFN


C MORE RESULTS
Due to space constraints, we place some experimental results of the additional validation in the appendix section. These results consist of
three main sections: one is a comparison of three algorithms that encourage policy diversity, DvD, SQL, and RSPO, with their respective
independent learning variants; the second is ablation studies of the proposed DPO algorithm; Moreover, the third verify the robustness of
different algorithms in the ATSC benchmark task under out-of-distribution traffic flow. Before giving these additional experimental results,
we post the complete diversity visualization results here, as shown in Figure 12a, 12b, 13a and 13b.
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(b) The Cologne scenario.

Figure 12: Comparison of policy diversity among DPO and other baselines under two scenarios in ATSC benchmark. Different
colors represent different commute times.

In addition to visualizing the global diversity of strategies obtained by different algorithms, we also show the proposed DPO’s policy
diversity at local intersections. In order to improve the interpretability of the visualization results, we selected the MP method based on
heuristic rules and expert knowledge as a comparison, and the results are shown in Figure 14. It can be seen from the figure that the strategy
output by the MP can better match the traffic flow, thereby reducing the average delay and other indicators. However, the DPO method does
not simply perform local optimization but considers global information. This makes the diversity policies obtained from the DPO achieve a
trade-off for allocating green light time at different times of a single intersection.

C.1 Independent Learning Variants
In the ATSC benchmark task, we find that the performance of the three algorithms DvD, SQL, and RSPO, which encourage policy diversity,
showed a significant degradation in large-scale structured action space. This is why in larger scale Battle scenarios, we directly use these
algorithms’ corresponding independent learning variants. In this section, we further compare the DvD, SQL, and RSPO algorithms and their
independent learning variants I-DvD, I-SQL, and I-RSPO in the TAPAS Cologne and InTAS scenarios of the ATSC benchmark, and the results
are shown in Table 3a and 3b.

The table shows that using the independent learning variant in a larger structured action space can lead to a more considerable performance
improvement. However, the DvD algorithm still does not perform as well as expected. Independent learning encourages diversity of atomic
actions, which will also prevent I-SQL and I-RSPO from getting a better diversity of policies in the structured action space. To verify this, we
used the same visualization method as in the experimental part of the main text, and the final results are shown in Figure 15.

As can be seen from the figure, in the small-scale structured action space, the independent learning variant does not bring significant
performance improvement in terms of diversity; However, in the large-scale structured action space, the independent learning variant learns
policies with more significant diversity.
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Figure 13: Comparison of policy diversity among DPO and others under the early and middle stages of the Battle benchmark.

Table 3: Performance (↓) of independent learning variants on two scenarios of the ATSC benchmark.

I-DvD. Col. Reg. DvD Col. Reg.
Avg. Delay 50.16 Avg. Delay 55.91
Avg. Trip Time 108.43 Avg. Trip Time 115.54
Avg. Wait 22.50 Avg. Wait 28.35
Avg. Queue 2.12 Avg. Queue 2.28
I-SQL Col. Reg. SQL Col. Reg.
Avg. Delay 28.39 Avg. Delay 58.32
Avg. Trip Time 93.48 Avg. Trip Time 116.29
Avg. Wait 6.74 Avg. Wait 30.01
Avg. Queue 0.55 Avg. Queue 2.06
I-RSPO Col. Reg. RSPO Col. Reg.
Avg. Delay 23.46 Avg. Delay 57.28
Avg. Trip Time 88.81 Avg. Trip Time 120.53
Avg. Wait 5.95 Avg. Wait 28.19
Avg. Queue 0.49 Avg. Queue 2.59

(a) Performance of independent learning variants (TAPAS Cologne).

I-DvD. Ing. Reg. DvD Ing. Reg.
Avg. Delay 74.58 Avg. Delay 73.22
Avg. Trip Time 215.07 Avg. Trip Time 212.81
Avg. Wait 32.48 Avg. Wait 31.36
Avg. Queue 1.45 Avg. Queue 1.42
I-SQL Ing. Reg. SQL Ing. Reg.
Avg. Delay 65.29 Avg. Delay 67.65
Avg. Trip Time 201.26 Avg. Trip Time 205.44
Avg. Wait 22.41 Avg. Wait 26.45
Avg. Queue 1.01 Avg. Queue 1.15
I-RSPO Ing. Reg. RSPO Ing. Reg.
Avg. Delay 86.59 Avg. Delay 90.42
Avg. Trip Time 215.25 Avg. Trip Time 226.5
Avg. Wait 39.76 Avg. Wait 44.16
Avg. Queue 1.58 Avg. Queue 1.74
(b) Performance of independent learning variants (InTAS).

C.2 Ablation Study
In this section, we perform some ablation studies on the three critical implementations of the DPO algorithm, including the additional
soft value regression (denoted as S) task introduced to accelerate the training of total flow 𝑍 , the additionally expanded termination action
(denoted as T) to accelerate the training, and the action space design (denoted as P) of GFlowNet. For the last point, in the ATSC benchmark,
we analyze the impact of the road network-based GFlowNet’s action space design on performance; In the Battle benchmark, we analyze the
impact of different physical topologies resulting from different influence ranges.



Figure 14: The arrival rate of traffic in a specific direction at an intersection in a main road and the proportion of green lights
generated by strategies output by different algorithms.

Table 4: Ablation studies of the proposed DPO under two scenarios of the ATSC benchmark.

Soft value regression Termination action Physical dependencies Ing.Reg Epochs Col.Reg EpochsDelay Trip Wait Queue Delay Trip Wait Queue
78.92 214.63 32.75 1.51 / 57.6 120.85 31.66 2.43 /

✓ 59.79 198.85 18.67 0.71 ∼2.6× 23.23 85.2 4.88 0.33 ∼3.5×
✓ 77.06 210.49 29.68 1.48 / 61.53 125.12 33.75 2.64 /

✓ 78.61 218.42 32.89 1.52 / 60.99 126.4 33.71 2.61 /
✓ ✓ 72.4 200.72 23.45 1.39 ∼2× 30.26 91.59 8.81 0.62 ∼1.7×

✓ ✓ 78.5 211.46 32.57 1.51 / 58.76 123.58 31.8 2.54 /
✓ ✓ 59.35 194.16 18.23 0.65 ∼2.6× 20.22 85.49 4.86 0.33 ∼3.2×
✓ ✓ ✓ 57.2 192.75 18.26 0.65 1× 20.28 81.42 4.77 0.32 1×

We first analyze the performance of the DPO algorithm on the ATSC benchmark, and the results are shown in Table 4, Figure 16a and 16b.
As seen from the table, the soft value regression task plays a crucial role in the performance of the DPO. This is due to its operational
guidance for training total flow 𝑍 , and the accuracy of 𝑍 estimation directly determines the diversity of the sampled structured actions.
While the termination action and the road network-based GFlowNet’s action space design have little impact, they can significantly improve
the convergence speed of the algorithm. Overall, the results of the ablation study are consistent with our previous conjecture.

The ablation studies on the DPO algorithm in the Battle benchmark task exhibited similar results, as shown in Table 5, Figure 16c and 16d.
In our experiments, instead of picking a different range of influence, an alternative approach is used, i.e., the nearest 𝑘 agents are chosen for
implementation. As seen in Table 5, while choosing a more significant number of agents to form the physical dependencies provides a slight
performance improvement, it also slows down the convergence of the algorithm because of the resulting larger GFlowNet action space.

C.3 Robustness in ATSC benchmarks
As explained in the §1, diversity of policies can improve the robustness of algorithms in non-stationary environments. Therefore, this section
tests the robustness of different algorithms by perturbing the traffic distribution in the ATSC benchmark and verifies whether the diversity
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Figure 15: Comparison of policy diversity among baselines and their independent learning variants under two scenarios in
ATSC benchmark. Different colors represent different commute times.
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(b) The Cologne scenario.
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Figure 16: Ablation studies on the ATSC and Battle benchmarks, where S denotes the additional soft value regression task
introduced to accelerate the training of total flow 𝑍 , T) denotes the additionally expanded termination action accelerate the
training, and P denotes the action space design of the GFlowNet. 𝑁 denotes algorithms without above three techaniques.

Table 5: Ablation studies of the proposed DPO under the Battle benchmark.

Soft value regression Termination action Avg. # Kills Avg. # Reward Avg. Epochs
20.1(±3.9) 0.013(±0.02) /

✓ 61.3(±0.4) 0.135(±0.08) ∼3.7×
✓ 20.6(±4.2) 0.015(±0.02) /

✓ ✓ 62.1(± 0.1) 0.142(± 0.19) 1×

# Nearest agents Avg. # Kills Avg. # Reward Avg. Epochs
3 61.3(±0.4) 0.135(±0.08) ∼1×
4 62.1(± 0.1) 0.142(± 0.19) 1×
5 62.3(± 0.1) 0.146(± 0.23) ∼1.7×
6 58.6(± 0.1) 0.101(± 0.25) ∼3.1×

policies are effective against the non-stationary factors in the environment. Specifically, for the TAPAS Cologne (8 lights, 5 main roads) and
InTAS (21 lights, 8 main roads) scenarios in the ATSC benchmark, we first randomly select 1 or 2 of the respective main roads, increase the
traffic flow by 10%, and train all the algorithms for 50 episodes (about 3% of the standard training sample size).

Since the DvD and MPLight algorithms have poor performance under ATSC and Battle benchmarks, we do not consider these two methods
here. Also, considering the poor scalability of SQL and RSPO under large-scale structured action spaces, we only verify the robustness of the
independent learning variants, i.e., I-SQL and I-RSPO. The average performance is shown in Table 6.



Table 6: The robustness of different algorithms after perturbing the traffic distribution in the ATSC benchmark. we randomly
select 1 or 2 of the respective main roads, increase the traffic flow by 10%, and traine all the algorithms for 50 episodes (about
3% of the standard training sample size).

MP Ing. Reg. Col. Reg. I-SQL Ing. Reg. Col. Reg.
1 road 2 roads 1 road 2 roads 1 road 2 roads 1 road 2 roads

Avg. Delay 70.24 85.9 26.83 31.4 Avg. Delay 91.36 101.04 38.31 44.59
Avg. Trip Time 235.77 272.82 92.02 113.25 Avg. Trip Time 258.09 286.68 134.58 143.06
Avg. Wait 23.46 26.18 5.59 6.31 Avg. Wait 32.31 35.73 7.36 7.87
Avg. Queue 0.83 0.88 0.39 0.43 Avg. Queue 1.26 1.39 0.52 0.59

I-RSPO Ing. Reg. Col. Reg. DPO Ing. Reg. Col. Reg.
1 road 2 roads 1 road 2 roads 1 road 2 roads 1 road 2 roads

Avg. Delay 88.54 97.46 35.51 39.62 Avg. Delay 60.27 72.77 21.45 25.37
Avg. Trip Time 246.73 261.9 126.99 132.55 Avg. Trip Time 211.82 245.41 86.6 102.87
Avg. Wait 30.63 32.23 7.08 7.48 Avg. Wait 19.17 22.91 5.04 5.87
Avg. Queue 1.15 1.22 0.47 0.51 Avg. Queue 0.69 0.824 0.34 0.42

As seen from the table, DPO can quickly achieve good performance using only a small number of samples for fine-tuning. The lack of
policy diversity in the other algorithms makes them have a significant performance gap with DPO.
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