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ABSTRACT
In spite of the success of existing meta reinforcement learning meth-
ods, they still have difficulty in learning a meta policy effectively
for RL problems with sparse reward. In this respect, we develop a
novel meta reinforcement learning framework called Hyper-Meta
RL(HMRL), for sparse reward RL problems. It is consisted with three
modules including the cross-environment meta state embedding
module which constructs a common meta state space to adapt to
different environments; the meta state based environment-specific
meta reward shaping which effectively extends the original sparse
reward trajectory by cross-environmental knowledge complemen-
tarity and as a consequence the meta policy achieves better gener-
alization and efficiency with the shaped meta reward. Experiments
with sparse-reward environments show the superiority of HMRL
on both transferability and policy learning efficiency.
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1 INTRODUCTION
Deep reinforcement learning (RL) have shown great success in
games [18, 25, 28], and also practical areas like robotics [5] and
traffic light management [30]. To achieve generalization and effi-
ciency on multiple tasks, meta reinforcement learning (meta-RL),
which combines RL and meta learning, has recently been studied
by extracting meta knowledge to help efficient policy learning on
new tasks. The works [6, 29] model task embedding as meta knowl-
edge, to extract task features. Direct attention is applied to policy
learning in [7], which is extended in [11, 12, 14, 32] by using ba-
sic components in RL as meta knowledge, e.g. hyper-parameters,
return function, advantage function and etc.

These methods are still algorithmically limited, especially with
sparse reward. Some meta-RL methods focus on the reward se-
quence: PEMIRL [34] introduces meta inverse RL to directly learn
the reward signals. NoRML [33] learns meta advantage values as
additional rewards. [37] employs meta-RL to design reward shaping
function, to speed up training on new tasks. The sparse reward
problem has been partially addressed by such methods, while it is
still far from resolved. Existing meta-RL models mostly deal with
tasks within one environment. The setting for transfer across dif-
ferent environments and the relevant techniques have not been
well studied in literature, especially with sparse rewards. In par-
ticular, we make two observations: 1) The rewards of tasks in the
same environment tend to be homogeneous which may weaken
the capacity for effective cross-task reward utilization; 2) While
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cross-environment meta knowledge can be complementary to en-
rich the reward over the tasks across environments, thus mitigates
the sparse reward issue.

Motivated by these observations, this work aims to devise a
cross-environment meta learning approach with sparse reward. We
propose a hyper meta RL framework, called Hyper-Meta RL, which
consists of three meta modules. We devise the cross-environment
meta state embedding module and environment-specific meta re-
ward shaping module to support the general meta policy learning
module. The meta state is embedded across environments. Based
on the general meta-state, the meta reward shaping module is dedi-
cated to generate targeted reward shaping function. Further, the
meta state and additional reward signals can improve the meta pol-
icy model to reduce the negative influence of missing reward signal.
Moreover, the shared meta state space benefits meta reward shaping
and provides a flexible mechanism to integrate domain knowledge
from multiple environments. The Hyper-Meta RL framework is
illustrated in Figure 1. The main contributions are:

1) For the sparse reward setting, a hyper-meta RL approach is
proposed, to jointly utilize the information of tasks from multiple
environments. This is in contrast to existing works for a single
environment. As a natural way to improve generalization for meta
policy learning, this proposes a novel meta-RL method on utilizing
cross-environment information for sparse reward RL problems;

2) For each environment, an environment-specific meta reward
shaping technique is developed. The shaping is fed with the meta
state learned from domain knowledge in both the current and other
environments. It can speed up new task learning either with or
without meta policy, and meanwhile the policy consistency can be
theoretically ensured;

3) We show that our methods can effectively improve both gen-
eralization capability and transfer efficiency, especially under envi-
ronments with notable heterogeneity, as shown in our experiments.

Finally, we point out that our approach in fact can be interpreted
as a hierarchical structure for task learning. The environment acts as
the group of tasks, which can either be formed by prior knowledge
or other means. In contrast, existing methods treat all tasks as in
a single environment. Hence the improvement can be attributed
to both our hyper-meta methods as well as the prior of the task
set structure. At least, our method allows a direct and effective
way to incorporate environment priors, which are often readily
available or naturally arise. Furthermore, our method don’t need
too much computing resources because the only additive parts
which need external computing resources are environment-specific
meta reward shaping and cross-environment meta state embedding
and they only need some simple neural networks.

2 RELATEDWORK
Sparse Reward Reinforcement Learning. As the reward signal is the
only supervised information in reinforcement learning, sparse re-
ward problems will cause many negative influence on the training
of reinforcement learning. Sparse reward reinforcement learning
methods contain these classes: 1) Reward shaping or reward de-
sign [13, 20, 21] methods; 2) Curriculum learning methods [8, 19,
27, 31]; 3) Bayesian reinforcement learning [10, 22]. The reward
shaping or reward design methods directly learns additional reward

to make the sparse reward dense while curriculum learning trans-
fer policy from easier task as a prior and Bayesian reinforcement
learning learns prior information about tasks.
Meta Reinforcement Learning. It aims to learn a common structure
between different tasks to solve new and relevant tasks efficiently.
Meta RL methods can also be divided into two categories: model-
based meta RL and model-free meta RL. The model-based methods
have the advantage to directly model dynamic environments, specif-
ically by the environment parameters [1, 3, 23] or priors [9].

Model-free meta RL methods can be divided into these classes:
1) recurrence based meta-RL methods, which use recurrent neural
network (RNN) to establish the meta task embedding [6, 17, 29];
2) gradient based meta-RL methods, which are mostly extended
from MAML [7] aim to learn a meta policy or some well-defined
meta parameters simultaneously. The meta information can be set
as the exploration strategy [11, 12, 35], advantage function [33],
reward shaping [37], return function [32] and etc; 3) hybrid meta-
RL methods [14, 26], considered as the hybrid of the above two
techniques.

[11, 12] set the exploration policy as the meta knowledge, while
[33] meta-learns the advantage function instead.

These meta-RL methods mostly focus on RL with dense reward,
and only a few pay attention to sparse reward case. NoRML [33]
meta-learns the advantage function for sparse reward tasks; [37]
introduces MAML to enhance the reward shaping technique, to
efficiently handle sparse reward ;VariBAD [36] uses the Bayesian
formulation to learn prior information to solve sparse reward prob-
lem in meta RL. Above meta-RL methods mostly address learning
of different tasks from the same environment; DREAM [16] build a
new exploration stricture to solve no reward problem only in adapt-
ing but not training time. For a more general meta-RL problem with
sparse reward, utilizing limited reward signals from relevant envi-
ronments to design the meta-RL algorithm can be a natural but
currently under-investigated way to increase the generalization
and transfer abilities.

3 HYPER-META RLWITH SPARSE REWARD
Our key idea is to combine model-based meta RL and model-free
meta RL. In our setting, tasks are sampled from different distribu-
tions based on environments, and environments are sampled from
a fixed distribution. Instead of modeling the environment directly,
our approach indirectly utilizes the common knowledge to model
the cross-environment meta knowledge, which is denoted as the
Cross-Environment Meta State Embedding.

As detailed in Figure 1, our Hyper-Meta RL method consists of
three modules: 1) cross-environment meta state embedding mod-
ule; 2) environment-specific meta reward shaping module; 3) meta
policy learning module. In the following part of this section, we
will first introduce the preliminaries and problem formulation, then
we will introduce the three modules. Further we will prove the
policy consistency to maintain on new tasks thus the method can
be extended to different tasks in a stable fashion.



Figure 1: Overview of HMRL: 1) Tasks from 𝑘 environments generate trajectories by their task specific policies {\𝑖, 𝑗 } separately;
2) Cross-Environment Meta State Embedding (Meta-SE) module obtains meta states 𝑠𝑚 from domain knowledge in multi-
environments and generated trajectories. 3) Environment-specific Meta Reward Shaping (Meta-RS) module employs the meta
states obtained by Meta-SE to calculate the meta reward shaping, as to generate extended trajectories. 4) Meta Policies (Meta-PC)
\ are learned based on the extended trajectories with meta state embedding and meta reward shaping. Environments can be
formed by prior or by other means in advance. The dashed box part is the cross-environment part in HMRL.

3.1 Preliminaries and Problem Formulation
We first introduce the popular meta-learning methodModel-Agnos-
tic Meta-Learning (MAML) in details, which serves as a basic tech-
nique employed in our approach. MAML meta-learns an policy
initialization \ (meta policy) of model parameters based on a series
of tasks {T𝑖 } by:{

\𝑖 ←− \ − 𝛼∇\LT𝑖 (\ ),
\ ←− \ − 𝛽∇\

∑
T𝑖 LT𝑖 (\𝑖 ),

(1)

where \𝑖 is the task-specific policy with respect to task T𝑖 , and is
updated from the meta policy \ ; 𝛼 and 𝛽 are both learning rates;
LT𝑖 denotes the loss with respect to task T𝑖 .

Now we consider a set of tasks {E1, E2, · · · , E𝑘 } from 𝑘 environ-
ments, where E𝑖 is the task subset for environment 𝑖 . The extended
Markov decision process (MDP) is defined:

E𝑖 =
({
S𝑖𝑗

}𝑛𝑖
𝑗=1

,S𝑚,

{
A𝑖

𝑗

}𝑛𝑖
𝑗=1

,

{
P𝑖𝑗

}𝑛𝑖
𝑗=1

,P𝑚, 𝛾, R̂
)
,

where there are 𝑛𝑖 tasks for environment 𝑖; S𝑖
𝑗
, A𝑖

𝑗
denote the

state and action set of the task 𝑗 for environment 𝑖 respectively,
and P𝑖

𝑗
(𝑠′ |𝑠, 𝑎) denotes the corresponding transition probability

function with 𝑠, 𝑠′ ∈ S𝑖
𝑗
, 𝑎 ∈ A𝑖

𝑗
; a shared meta state space S𝑚

is introduced based on some domain knowledge of all environ-
ments, and the corresponding meta transition probability function
is denoted as P𝑚 (𝑠′ |𝑠, 𝑎); 𝛾 denotes the discount factor; our newly
devised reward R̂ is used as will be discussed later in the following.

Reward Shaping: Further we introduce the reward shaping. The ob-
jective in RL is to maximize expected discounted long-term return:

E

[
𝐺 :=

𝑇∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
.

The reward signal is often weak or even missing in many appli-
cations [13, 20, 21], making it more difficult to learn the optimal
policy. The reward shaping technique is used to solve this problem
by adding an extra reward signal F , leading to the composite re-
ward RF = R + F . Usually, the shaping reward F encodes some



heuristic knowledge for more effective optimal policy search. It is
worth noting that modifying the original reward will eventually
change the task and may cause the policy inconsistency. To solve
this problem, potential-based reward shaping is proposed in [20]:

F (𝑠, 𝑎, 𝑠′) = 𝛾𝜙 (𝑠′) − 𝜙 (𝑠), (2)

where 𝑠 , 𝑠′ denote two consecutive states and 𝑎 denotes the action;
𝜙 is a potential function; the function value F denotes the reward
shaping signal as the difference between the potential of 𝑠′ and
𝑠; 𝛾 denotes a discount rate. The dynamic potential-based reward
shaping in [4] extends the original reward shaping to allow dynamic
shaping and maintain the policy consistency:

F (𝑠, 𝑡, 𝑠′, 𝑡 ′) = 𝛾𝜙 (𝑠′, 𝑡 ′) − 𝜙 (𝑠, 𝑡), (3)

where 𝑡 and 𝑡 ′ are two consecutive time stamps.

3.2 Cross-Environment Meta State Embedding
The cross-environment meta state embedding module focuses on
embedding both the domain knowledge of the environment and
the trajectory of the environment-specific tasks into a unified meta
state space. The prior knowledge among different environments
should be properly determined to define the shared meta state space
S𝑚 . For example, the meta state can be defined as the agent co-
ordination in both 1st person game and 3rd person game because
the agent coordination is in a same space so that it can be shared.
The setting of the meta state space is flexible, while the embedding
function can further be pertinently learned in the closed loop of the
whole algorithm. We can easily use some shared information in dif-
ferent environments’ state spaces, and extract them into the shared
meta state space. For the Hallway problem, the concatenation of
the location information is established as the meta state embedding
function ℎ without learning. More generally, the function ℎ can
directly embed the original agent state together with some global
features of the related task into the common meta state space (or
a shared latent space). For the Maze problem, we employ a linear
function parameterized by each environment’s scenario size (do-
main knowledge 𝑧) as the state embedding function ℎ, which makes
a common mini-map as the common meta state.

3.3 Environment-specific Meta Reward Shaping
The environment-specific meta reward shaping module focuses on
constructing the shaped reward, i.e., R̂ = R + F . This module is
based on the the potential-based reward shaping, while the cross-
environment meta states are set to be the input of the potential
function 𝜙 . The formulation is as:

F (𝑠𝑚, 𝑠′𝑚) = 𝛾𝜙 (𝑠′𝑚) − 𝜙 (𝑠𝑚), (4)

where 𝑠𝑚 ∈ S𝑚 and 𝑠′𝑚 ∈ S𝑚 . The potential function 𝜙 plays
the key role in the above reward shaping, which is meta-learned.
The parameter 𝛾 denotes the discount factor of the RL problem.
The cross-environment meta sate contains not only the state in-
formation but also the environment-specific task information. The
potential value 𝜙 (𝑠𝑚) will also be environment driven. Eventually,
based on the cross-environment meta state embedding ℎ(𝑠; 𝑧) in-
troduced in 3.2, the cross-environment meta states based potential
function can be further expressed as:

F (𝑠𝑚, 𝑠′𝑚) = 𝛾𝜙 (ℎ(𝑠′; 𝑧)) − 𝜙 (ℎ(𝑠; 𝑧)) . (5)

Algorithm 1 HMRL: Hyper-Meta {𝑠𝑡𝑎𝑡𝑒, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑝𝑜𝑙𝑖𝑐𝑦} for Rein-
forcement Learning with Sparse Reward
1: Input: Task trajectory set: 𝜏 (M); Distribution over tasks:

𝑝 (T ); Learning rates: 𝛼, 𝛽 ;
2: Initialization: \ ,

{
\𝑖
𝑗

}
, ℎ, 𝜙 ;

3: while not done do
4: Sample batch of environments {Ẽ ∼ 𝑝 (E)}
5: for each environments do
6: Sample batch of tasks {T̃ ∼ 𝑝 (T |Ẽ)};
7: for each T̃ do
8: Sample 𝑚 extended trajectories D := {𝜏 ′ (T̃ )} with

meta states ℎ, reward shaping 𝜙 , policy \ ;
9: Evaluate ∇\L T̃ (\ ) using D and Eq. (6);
10: Update task-specific policy \ T̃ by SGD:

\ T̃ = \ − 𝛼∇\L T̃ (\ );

11: Sample ℓ extended trajectories D̃′ := {𝜏 ′ (T̃ )} with
meta state embedding ℎ, reward shaping 𝜙 and task-
specific policy \ T̃ ;

12: end for
13: Update meta policy \ Ẽ with Eq. (6) and extended trajecto-

ries D′:
\ Ẽ = \ Ẽ − 𝛽

∑︁
T̃
∇\L T̃ (\ T̃ );

14: end for
15: Update cross-environment meta state embedding ℎ and

environment-specific meta reward shaping 𝜙 with gradi-
ent descent by Eq. (11);

16: end while

So that if we regard the cross environment meta state embedding
ℎ(.; 𝑧) as part of the potential function 𝜙 . Then it is likely to claim
that the policy consistency for reward shaping will still holds. And
we have proved it in the 3.5. The policy consistency will strength
the adaption to new tasks.

3.4 Meta Policy Learning
As shown in Fig. 1, the meta policy is learned based on the extended
trajectories of different tasks, while the meta state embedding and
meta reward shaping are employed to support meta policy implic-
itly. We introduce the MAML framework to compute the meta
policy iteratively. For the 𝑗-th task T 𝑖

𝑗
of environment E𝑖 , the agent

aims to find the task-specific policy \𝑖, 𝑗 which can maximize the
accumulated shaped reward R̂, and the loss for task T 𝑖

𝑗
is:

LT𝑖
𝑗
(\𝑖, 𝑗 ):=−E𝑠𝑖,𝑗𝑡 ,𝑎

𝑖,𝑗
𝑡 ∼\𝑖,𝑗

[
𝑇∑︁
𝑡=0

𝛾𝑡 R̂ (𝑠𝑖, 𝑗𝑡 , 𝑎
𝑖, 𝑗
𝑡 )

]
,

R̂ (𝑠𝑖, 𝑗𝑡 , 𝑎
𝑖, 𝑗
𝑡 ) = R(𝑠

𝑖, 𝑗
𝑡 , 𝑎

𝑖, 𝑗
𝑡 ) + F (𝑠

𝑖, 𝑗,𝑡
𝑚 , 𝑠

𝑖, 𝑗,𝑡+1
𝑚 ),

(6)

where 𝑠𝑖, 𝑗𝑡 ∈ S𝑖𝑗 and 𝑎
𝑖, 𝑗
𝑡 ∈ A𝑖

𝑗
; 𝑠𝑖, 𝑗,𝑡+1𝑚 ∈ S𝑚 and 𝑠

𝑖, 𝑗,𝑡
𝑚 ∈ S𝑚 are

both meta sate vectors corresponding to 𝑠𝑖, 𝑗
𝑡+1 and 𝑠

𝑖, 𝑗
𝑡 respectively.

The meta state based meta reward shaping is introduced to modify
original reward in order to increase the training efficiency. Actually



each meta state 𝑠𝑖, 𝑗,𝑡𝑚 in T 𝑖
𝑗
is determined by the original state 𝑠𝑖, 𝑗𝑡

and some fixed task features, so that the shaping function value
F (𝑠𝑖, 𝑗,𝑡𝑚 , 𝑠

𝑖, 𝑗,𝑡+1
𝑚 ) is fixed with respect to \𝑖, 𝑗 . The gradient of LT𝑖

𝑗

corresponding to \𝑖, 𝑗 is the same as follows:

L̃T𝑖
𝑗
(\𝑖, 𝑗 ) := −E𝑠𝑖,𝑗𝑡 ,𝑎

𝑖,𝑗
𝑡 ∼\𝑖,𝑗

[
𝑇∑︁
𝑡=0

𝛾𝑡R(𝑠𝑖, 𝑗𝑡 , 𝑎
𝑖, 𝑗
𝑡 )

]
, (7)

which also denotes the original loss function without meta reward
shaping. The meta policy \ and task-specific policies

{
\𝑖, 𝑗

}
can be

iteratively learned by (6), following MAML.
The meta state embedding ℎ and meta reward shaping 𝜙 will

be alternatively updated together with the meta policy. Before dis-
cussing details of learning the meta state embedding ℎ and the meta
reward shaping potential function 𝜙 , we can assume that for each
meta state 𝑠∗𝑚 ∈ S𝑚 , no less than one original state corresponds to
it. Without loss of generality, the state set corresponding to 𝑠∗𝑚 is
denoted as S(𝑠∗𝑚). The potential function 𝜙 can be expressed as:

𝜙 (𝑠∗𝑚) = E{
T𝑖
𝑗

} [
E𝑠∈S(𝑠∗𝑚 )

(
𝑉 ∗T𝑖

𝑗

(𝑠)
)]

, (8)

where function 𝑉 ∗ (·) denotes the classical optimal value function.
However, the optimal value function 𝑉 ∗ is extremely hard to guar-
antee, we employ the return function to approximately estimate
the optimal value function, i.e.,

𝜙 (𝑠∗𝑚) = E{
T𝑖
𝑗

} [
E𝑠∈S(𝑠∗𝑚 )

(
ReturnT𝑖

𝑗
(𝑠)

)]
, (9)

where the return function is calculated as follows:

Return(𝑠𝑡 ) =
{
R̂ (𝑠𝑡 ) + 𝛾Return(𝑠𝑡+1), 𝑡 < 𝑇 ;
R̂ (𝑠𝑡 ), 𝑡 = 𝑇 .

The loss function with respect to the meta state embedding and
meta reward shaping can be established based on Eq. 9. For each
𝑠𝑚 ∈ S𝑚 , we define the loss function as follows:

L𝑠𝑚 :=

(
E{
T𝑖
𝑗

} [
E𝑠∈S(𝑠𝑚 )

(
ReturnT𝑖

𝑗
(𝑠)

)]
− 𝜙 (𝑠𝑚)

)2
, (10)

Further by fixing the last 𝜙 (𝑠𝑚) with ℎ and 𝜙 from former iteration,
and considering all significant meta state 𝑠𝑚 ∈ 𝑆𝑚 (depending on
specific test problems), we obtain the overall loss for meta state
embedding and meta reward shaping:

L(𝜙,ℎ) :=
∑︁
𝑠𝑚

L𝑠𝑚 . (11)

The meta state embedding function ℎ and meta reward shaping
potential function 𝜙 are both updated by gradient descent via (11).
The overall meta-RL scheme is shown in Alg. 1. With the obtained
meta policy \ , meta state embedding ℎ and meta reward shaping 𝜙 ,
we can do fine-tune on new tasks and the detailed algorithm is given
in Alg. 2. To emphasize, new tasks can utilize only the obtained
meta state embedding and meta reward shaping modules, without
the meta policy. These two meta modules can independently be
applied to new tasks with new policy structure, thus their policy
structure can be different from that of the meta policy.

Algorithm 2 New Task Fine-tuning with Hyper-Meta RL
1: Input: New task T𝑛𝑒𝑤 ; meta state embedding ℎ, reward shap-

ing 𝜙 and policy \ ;
2: Sample extended trajectories D𝑛𝑒𝑤 with ℎ and 𝜙 ;
3: Evaluate ∇\LT𝑛𝑒𝑤 (\ ) using trajectories D𝑛𝑒𝑤 ;
4: Update task-specific policy \T𝑛𝑒𝑤 by gradient descent:

\T𝑛𝑒𝑤 = \ − 𝛼∇\LT𝑛𝑒𝑤 (\ ) .

5: if not fixed then
6: Update cross-environment meta state embedding ℎ and

environment-specific meta reward shaping 𝜙 with gradi-
ent descent by Eq. (11)

7: end if

3.5 Theoretical Study and Discussions
Policy Consistency. For classical reward shaping, any potential-
based reward shaping can guarantee the consistency of optimal
policy [4, 20]. However HMRL aims to learn meta modules to fulfill
policy adaptation on different tasks rather than getting the optimal
policy on a specific task. We are concerned with the question if
the meta reward shaping scheme is applied on new task learning,
whether the optimal policy keeps still. Our theory shows, using
meta reward shaping can maintain policy consistency on new tasks.

Theorem 1. Assume a new task T = {S,A,P, 𝛾,R} has the
same meta state space S𝑚 with the obtained meta RL model. If the
environment-specific meta reward shaping F (𝑠𝑚, 𝑠′𝑚) is utilized, then
it will have the consistency of optimal policy between the extended
new task T ′ = {S,S𝑚,A,P, 𝛾,R + F } and original task T .

Proof. Consider the accumulated reward for task T , i.e. 𝐺T =∑𝑇
𝑖=0 𝛾

𝑖R(𝑠𝑖 ), where 𝑠𝑖 ∈ S. Further the accumulated reward for
extended task T ′ can be calculated as

𝐺T′ =
∑𝑇
𝑖=1 𝛾

𝑖
[
R(𝑠𝑖 ) + F (𝑠𝑖𝑚, 𝑠𝑖+1𝑚 )

]
=

∑𝑇
𝑖=1 𝛾

𝑖
[
R(𝑠𝑖 ) +

(
𝛾𝜙 (𝑠𝑖+1𝑚 ) − 𝜙 (𝑠𝑖𝑚)

) ]
=

∑𝑇
𝑖=1 𝛾

𝑖R(𝑠𝑖 ) +
∑𝑇
𝑖=1

(
𝛾𝑖+1𝜙 (𝑠𝑖+1𝑚 ) − 𝛾𝑖𝜙 (𝑠𝑖𝑚)

)
= 𝐺T − 𝜙 (𝑠0𝑚), (12)

which indicates that the difference between the accumulated reward
𝐺 ′T and 𝐺T is a constant because 𝜙 (𝑠0𝑚) is independent with the
policy. Further the goal to calculate the optimal policy for two tasks
is to maximize the accumulated rewards 𝐺 ′T and 𝐺T respectively.
The optimal policies are equivalent based on (12). □

4 EXPERIMENTS
4.1 Evaluation Protocol
In this section, two sparse reward RL applications are chosen from
the popular gym-miniworld [2] to test the efficiency of the proposed
HMRL, i.e., Hallway and Maze. The reward can be obtained only
after each task is finished and in all the two problems, we set the re-
ward as −used-steps. Both 1st and 3rd scenarios are studied, which
also are considered as different environments1. The agent in the
1st person environment can only obtain the observed information
1In experiment section of this paper, scenario is equivalent to environment



(a) 1st Person (b) 3rd Person (c) New task’s map

Figure 2: The Hallway Problem. 2(c) shows the scenario/map
of the evaluation task, and the task in both 1st person envi-
ronment and 3rd person environment are evaluated.

from its own moving direction, while the 3rd environment can
obtain the whole scenario observation, e.g., Figure 2 and Figure 6.
Eventually, 1st person environment is much more difficult than 3rd
person environment because of partially observation.

Four baseline meta RL algorithms are compared with the pro-
posed HMRL: MAML [7] (the groundbreaking meta RL algorithm),
NoRML [33] (the state-of-the-art meta RL algorithm for sparse re-
ward setting), variBAD [36] (the state-of-the-art Bayesian meta RL
algorithm for sparse reward setting) variBAD [36] and HMRL-w/o-
ms (HMRLwithout meta state embedding, while the potential based
reward shaping directly conditioned with different environment
states, which is from [37]). To emphasize, MAML is enhanced with
the flexible meta-SGD extension technique in [15].

All baselines except HMRL-w/o-ms are trained on each scenario
independently, because they are not adaptive to the cross environ-
ment setting. While HMRL-w/o-ms is trained on cross environment
setting as the ablation experiments.

For fair comparison, all methods are trained with the same inner-
loop and outer-loop iteration numbers.

In the experiment, our policy network contains two layers Convo-
lutional Neural Networks with the kernel size of [5, 5], then we use
two fully connected layer with the size of 128. We use the ReLU acti-
vation for all models. All the baselines use the same policy network.
MAML and NoRML’s implementations are from https://github.
com/google-research/google-research/tree/master/norml. While
variBAD’s implementation is from https://github.com/lmzintgraf/
varibad. In the variBAD, we use a 128 unit RNN as the trajectories
embedding.

4.2 Problem I: Hallway
The agent aims to reach the red box (or target point) at the end of a
straight hallway, while avoiding bumping into walls. Different tasks
in each environment (e.g., 1st person or 3rd person) are defined
by the random initialization of the start location. For both 1st and
3rd person environments, the observation of the agent in each
step contains a 80 × 60 × 12 tensor (including recent four frames
with RGB channels of its view towards its moving direction, while
Figure 2(a) and Figure 2(b) denotes each frame of two environments
respectively) and the coordinates of the agent and the red box. The
action space contains four moving directions

{up, down, left, right},

with 0.2 unit. The task ends if the agent reaches within 1.0 distance
to the red box and each rollout has a maximum horizon of 80 steps.

The common meta state 𝑠𝑚 is set to be the coordinates of the
agent in two environments and the red box, which is denoted as a
3 × 2 matrix. As a result, the meta state embedding function ℎ can
be considered as simple concatenation of the location information
without learning. The meta reward shaping potential function 𝜙 is
set as a fully-connected network with two 32 units hidden layers.
The policy network 𝜋 is set as a Convolutional Neural Networks
and the setting details are proposed in 4.1.

Additionally for evaluation, we introduce a new task with both
1st person and 3rd person environments within a different map, i.e.
Figure 2(c). The evaluation task is set with the start point of the
agent at [1.0, 6.0] and the red box at [3.0, 9.0]. In order to show the
transfer-ability of our algorithm within sparse reward and cross-
environment tasks, we further modify a new action space setting:

{turn left, turn right,move forward,move back},

where “turn left" and “turn right" aims to change the agent’s direc-
tion left and right respectively in a counterclockwise/clockwise
direction with 30 degree, while “move forward" and “move back"
aims to move the agent on its current direction with 0.2 unit.

From Figure 3(a) and Figure 3(b), our proposed HMRL makes an
improvement compared with all other baselines in both 1st person
and 3rd person environments.

Compared with HMRL-w/o-ms which directly use the reward
shaping without meta state embedding, HMRL can obviously ben-
efit from the cross-environment knowledge. While directly using
reward shaping will introduce more noise from heterogeneous state
of different environments.

Figure 3(c) presents the step numbers for the agent arriving at
the target red box from 10 randomly chosen tasks, and our proposed
HMRL uses theminimum steps in theworst task on 1st environment
and achieves a decent holistic performance. HMRL can promote
agent in relatively harder case (e.g., 1st person environment com-
pared with 3rd person environment) exploring more efficiently by
the utilization of cross-environment meta information.

Figure 3(d) shows the heat map of the averaged potential value in
the cross environment meta reward shaping on a specific training
task. The targets (red boxes) are located on the right of the map, and
the agent will obtain a positive reward shaping if it moves from the
smaller potential value to the larger one. The heat map proves that
the learned cross-environment meta reward shaping encourages
the agent moving to the target (red box).

If we proceed further, we can find the learning curves of most
baselines shows that training in 1st person environment(Fig.3(a))
is more difficult than 3rd person environment(Fig.3(b)) at the early
time because of the low sample efficiency caused by sparse reward
and partial observation. But HMRL can bring the effective prior
from 3rd person environment to 1st person environment through
the cross-environment part. So it represented the training process
with a smaller gap between the two environments.

All the evidence above confirmed that HMRL can reach our main
motivation of using cross environment information to solve sparse
reward problem inmeta reinforcement learning because it assuredly
learned the cross environment information and the learned cross
environment information positively help the meta reinforcement
learning tasks with sparse reward problem.

https://github.com/google-research/google-research/tree/master/norml
https://github.com/google-research/google-research/tree/master/norml
https://github.com/lmzintgraf/varibad
https://github.com/lmzintgraf/varibad


(a) 1st person environment (b) 3rd person environment (c) Used steps on the tasks (d) Potential value heatmap

Figure 3: Results of the 1st person and 3rd person environments in Hallway problem. 3(a) and 3(b) shows the learning curve of
both environments in training process. 3(c) shows the step numbers for the agent finishes the 10 randomly chosen tasks with
the trained policy. 3(d) shows the heat map of the averaged potential value in the cross environment meta reward shaping.

(a) 1st person environment (b) 3rd person environment (c) HMRL-direct

(d) Fine-tuned HMRL (e) Trajectories in 1st person environment (f) Trajectories in 3rd person environment

Figure 4: The results on the new evaluation tasks shown in Figure 2(c) within both 1st person environment and 3rd person
environment. The blue, red and black colors denote the “start" point, “target" point and “misleading" point (defined in the main
context) respectively. The trangle is the start point and the red box is the target. And the blue trajectories are from the policy
trained by HMRL-direct, the red trajectories are from the policy trained by Fine-tuned HMRL. All the trajectories are collected
from the policies ran on the corresponding evaluation task for 20 times.

Figure 4 shows the result comparison on the evaluation task
in Figure 2(c) in order to show the transfer-ability of different
algorithms. The policy obtained by our proposed HMRL can be
directly applied to the new task, which is one of the advantages
of HMRL and denoted as HMRL-direct. All compared algorithms
are fine-tuned for better adapting to the evaluation task including
the HMRL. Moreover, the RL method PPO2 [24] is compared and
trained from the beginning on this evaluation task as a bottom line.

2All meta learning methods in this paper use PPO as the inner training methods

In Figure 4(a), we can find that all meta RL algorithms are more
efficient than PPO.

Most important, the HMRL outperforms all other baselines on
both direct transfer and fine-tuned transfer cases in both environ-
ments, while the fine-tuned transfer version performs much better
in the 1st person environment. Figure 4(c) and 4(d) present the
heatmap of the potential value obtained by HMRL-direct and fine-
tuned HMRL respectively. In Figure 4(c), the potential value of the
target point is not the largest one, as a result we call the point
with the “misleading" point because of the larger potential value



(a) 2RS3 (b) 2RS4 (c) 3RS3

Figure 5: The learning curve of different environments in Maze problem.

(a) 2RS3 (b) 2RS4 (c) 3RS3 (d) 2RS3-heatmap (e) 2RS4-heatmap (f) 3RS3-heatmap

Figure 6: Visualization of Maze Problem and corresponding potential value heatmap. In the chosen task within 2RS4, the red
box was located in the upper right.

usually guiding the agent to move towards. Conversely, there is no
“misleading" point for the fine-tuned HMRL heatmap, so that the
agent have a higher possibility to go on a closer way. This guess can
also be supported by the average trajectories of 1st environment in
Fig 4(e), where the policy trained by HMRL-direct guides the agent
go to the right-side where the misleading point located. But at the
same time, the average trajectories of 3rd person environment in
Fig 4(f) showes the policy trained by HMRL-direct doesn’t have this
tendency, and also both HMRL cases have the similar final result in
the learning curve in Fig 3(b). In this point, it seems that Fine-tuned
HMRL can get a better performance when treating with new partial
observed tasks suffer from sparse reward problem.

Overall, in the experiment, HMRL can jointly utilize the infor-
mation of tasks from different environments and using the learned
cross environment information to speed up and improve both new
task learning as well as meta policy training under sparse reward
problem. All these figures prove the transferability and policy learn-
ing efficiency of HMRL.

4.3 Problem II: Maze
The agent in Maze problem aims to reach the red box (or target
point) in a randomly generated maze. Three different environments
are considered, i.e., 2RS3, 2RS4 and 3RS3 (Figure 6). The task
for each environment is defined by the random initialization of
scenario (both start point and target point). The brief introduction
of these environments are proposed as follows: 1) 2RS3: a maze
with 2 rooms and the size of each room is 3 (shown in 6(a)) which
is called 2R(room)S(size)3 with 2RS3 for short. The observation
is obtained in the 3rd person view, and the action space is set to
be moving to {up, down, left, right} with a length of 0.2; 2) 2RS4:
a maze with 2 rooms and the size of each room is 4 (shown in
6(b)). The observation is obtained in the 1st person view, and the
action space is set to be changing the agent’s direction left and

right ({turn left, turn right}) and moving to forward or backward
({move forward,move back}) with a length of 0.2; 3) 3RS3: a maze
with 3 rooms and the size of each room is 3(shown in 6(c)), we also
set the step length as 0.4 to speed up the task. The other settings
are the same as 2RS3.

For all three environments, the observation contains a 80×60×12
tensor (including recent four frames with RGB channels and the
coordinates of the agent and target red box). Additionally, the task
will end if the agent reaches within 1.0 to the target red box and each
rollout has a maximum horizon of 150 steps. Due to the difference
among these environments, directly setting the common meta state
𝑠𝑚 to be the coordinates of the agent and the red box is useless. For
this reason, we set the state embedding function ℎ to be a linear
function based on each environment’s scenario size (denoted as the
domain knowledge 𝑧), with a 3 × 2 mini-map as the common meta
state 𝑠𝑚 . The meta reward shaping potential function 𝜙 is set as a
fully-connected neural network with two 32 units hidden layers.
The policy network 𝜋 is set as a Convolutional Neural Networks
and the setting details are proposed in 4.1. The learning curves are
shown in Fig. 5.

It is obvious that our HMRL performs better than other baselines
in all environments. And in Figure 6(d), Figure 6(e) and Figure 6(f),
the potential values on different environments’ meta states are
proposed. The meta reward shaping can lead the agent to the true
target red box, for the reason that the closer to the target leads
to the larger potential value. So the evidence above indicates that
HMRL can transfer meta knowledge among multiple environments
with more efficient reward shaping. Furthermore, it shows that
in this experiment with a different setting in cross environment
meta reward shaping and scenarios than the experiment in 4.2, our
HMRL can also assuredly learn the cross environment information
from more different environments and using the cross environment



information to help training the meta reinforcement learning tasks
with sparse reward problem.

In this experiment, HMRL still can utilize the cross environment
information in a more general setting. So that we can say this
experiment further prove the transferability and policy learning
efficiency of HMRL.

5 CONCLUSION
A hyper-meta reinforcement learning algorithm (HMRL) has been
proposed to handle the typical sparse reward problem. The cross-
environment meta state embedding and environment-specific meta
reward shaping modules are devised to cooperate with the general
meta policy learning module, which increase the generalization
and learning efficiency of meta-RL. Furthermore, a shared meta
state space is designed with a specific meta reward shaping tech-
nique, which enables and improves the capability of extracting
complementary meta knowledge, introducing domain knowledge,
speeding up the policy learning for cross-environment tasks. Ex-
perimental results with sparse reward demonstrate the superiority
of the proposed method on both transfer-ability and efficiency. Our
work can also be considered as an early search of designing intrinsic
reward in cross-environment problems.

In the future, we will focus more on searching optimal reward in
more flexible cross-environment problems. As recent attempts on
cross-environment situations are limited in action space and state
space, we have taken a small but pioneering step forward. Also, we
will explore more challenging environment changes (perhaps by
collaborating with other party to access the real-world platforms)
whereby our method may have much potential. The source code
will be made public available.
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