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Abstract
In multi-agent reinforcement learning, each agent acts to maximize its individual accumulated re-

wards. Nevertheless, individual accumulated rewards could not fully re�ect how others perceive them,
resulting in sel�sh behaviors that undermine global performance. �e externality theory, de�ned as “the
activities of one economic actor a�ect the activities of another in ways that are not re�ected in market
transactions,” is applicable to analyze the social dilemmas in MARL. One of its most profound non-market
solutions, “Pigovian Tax”, which internalizes externalities by taxing those who create negative external-
ities and subsidizing those who create positive externalities, could aid in developing a mechanism to
resolve MARL’s social dilemmas. �e purpose of this paper is to apply externality theory to analyze
social dilemmas in MARL. To internalize the externalities in MARL, the Learning Optimal Pigovian Tax
method (LOPT), is proposed, where an additional agent is introduced to learn the tax/allowance alloca-
tion policy so as to approximate the optimal “Pigovian Tax” which accurately re�ects the externalities
for all agents. Furthermore, a reward shaping mechanism based on the approximated optimal “Pigovian
Tax” is applied to reduce the social cost of each agent and tries to alleviate the social dilemmas. Com-
pared with existing state-of-the-art methods, the proposed LOPT leads to higher collective social welfare
in both the Escape Room and the Cleanup environments, which shows the superiority of our method in
solving social dilemmas.

1 Introduction

Reinforcement Learninghas achieved wide success in various scenarios [21, 16, 13, 39] and has been suc-
cessfully expanded into the multi-agent se�ing, especially in fully-cooperative games [33, 19, 36]. However,
most multi-agent reinforcement learning (MARL) methods that use centralized learning methods with a
team reward [8, 28, 26, 25] are excluded as they don’t scale feasibly to large populations and are not suitable
for self-interested agents. In addition, decentralized learning methods [29, 27, 2], where agents are de-
signed to maximize their individual rewards based on their personal interests, have di�culty dealing with
coordination among agents. In many real-world environments with mixed-motives, such as those within
exclusionary and subtractive common-pool resources [24, 17, 18], sel�sh agents may fall into social dilem-
mas because of the temptation to evade any cost, which brings extra social costs and negative in�uences on
social welfare.

Social dilemma originates from economics and describes situations in which individual rationality leads
to collective irrationality [14], where a more precise de�nition is that everyone bene�ts from mutual co-
operation but individuals pro�t disproportionately from non-cooperative behaviors. Similarly, in MARL, it
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is de�ned as a con�ict between agents’ self-interest and team reward [17]. Previous works in economics
try to apply the externality theory in dealing with social dilemmas [30], where an externality is proposed to
present whenever the well-being of a consumer or the production possibilities of a �rm are directly a�ected
by the actions of another agent [20]. �erefore, the externality theory is a practical tool to measure the in�u-
ence on social welfare caused by self-interested agents. Positive externality arises from agents who bene�t
social welfare, while negative externality comes from agents who harm it. Various non-market and market
solutions have been proposed to reduce the negative in�uence [23, 1, 4]. “Pigovian Tax” is one of the most
popular solutions [4] in non-market economics, which levies taxes on any market activity that generates
negative externalities and provides allowances to market activities that bring positive externalities [22]. In
this instance, the Carbon Tax is an example of a Pigovian tax that reveals the ”hidden” social costs of carbon
emissions. Indirectly, these costs are felt through more severe weather events.

It is therefore natural to introduce externality theory to the social dilemmas in MARL, which can provide
a theoretical foundation to explain its emergence. In these cases, the ”Pigovian Tax” will o�er a potential
solution to the problem of social dilemmas by addressing externality. Consequently, our main concern is how
to measure externality and develop an e�ective tax/allowance mechanism to reduce negative externality and
promote positive externality.

In this paper, we model externality as measuring social dilemmas with theoretical justi�cations. Af-
terward, a Pigovian tax/allowance mechanism is proposed to alleviate social dilemmas by discouraging
negative externalities while encouraging positive externalities. �e proposed method Learning Optimal
Pigovian Tax (LOPT) employs a centralized agent, called the tax planner, which is built to learn the Pigo-
vian tax/allowance mechanism and allocate tax/allowance rates based on the team reward. Learning the
tax/allowance allocation policy maximizes the long-term team reward, which is equivalent to approximat-
ing the optimal Pigovian tax. According to the learned tax/allowance rates, a distinctive-structure reward
shaping, optimal Pigovian tax reward shaping, is established. Di�erent from recent reward shaping struc-
tures, which are either hand-cra�ed or evolved based on other agents’ performance [7, 10, 34]. �e proposed
LOPT is based on the approximated optimal Pigovian tax within a percentage tax/allowance formulation.
As a result of this reward structure, each agent’s externality is visualized so that its in�uence on the envi-
ronment can be quanti�ed.

�e primary contributions of this paper are as follows: 1). Externality theory is �rst introduced to mea-
sure the in�uence of each agent’s policy on social welfare and support to analyze of the social dilemma
problems in MARL; 2). A centralized tax/allowance mechanism based on reward shaping is proposed to get
the optimal Pigovian tax and solve the externality in MARL tasks; 3). Experiments in the Escape Room envi-
ronment and the challenging Cleanup environment 1 show the superiority of the mechanism for alleviating
social dilemmas in MARL.

2 Related Works

LOPT is motivated by the problem of cooperation among independent learning agents within intertempo-
ral social dilemmas (ISDs) [17]. In such a problem, agents aim to maximize their individual accumulated
rewards, but mutual defection leads to low social welfare in the long term. MARL algorithms designed for
fully-cooperative tasks [8, 28, 26] are incapable of ISDs, as in such problems, agents have mixed motiva-
tions. Our work is inspired by the externality theory [20] in economics, which focuses on the well-being of
a consumer or the production possibilities of a �rm that are directly a�ected by the action of another entity.
Externality theory provides a theoretical framework to analyze how each entity in economic society a�ects
social welfare, which is highly related to intertemporal social dilemmas. Moreover, in economics, various
solutions in both non-market economies [1] and market economies [23] have been proposed to solve the
externality problem and improve social welfare. LOPT is based on the most popular non-market economy
solution, the Pigovian tax [4]. Pigovian tax is the tax on any market activity that generates negative ex-

1Code for our implementation is available at https://github.com/Felix2048/LOPT.
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ternalities so that the hidden social in�uence becomes visible to the entity in the economic society and the
externality is internalized. Additionally, some works in economics, like AI-Economist [38], use reinforce-
ment learning to improve tax policies. LOPT uses a similar two-stage tax planner structure to AI Economist.
However, LOPT use externality theory and Pigovian tax/allowance to deal with the social dilemma problems
in the MARL area.

In the ISDs, optimal Pigovian tax reward shaping assigns negative reward shaping to any behavior that
does harm the social welfare and positive reward shaping to behaviors that promote social welfare. So,
the self-interested agent can obtain adequate feedback from the global in�uence to solve the ISDs problems.
Most reward shaping or intrinsic reward-based methods [7, 10, 34] dealing with ISDs are either hand-cra�ed
or evolved based on other agents’ performance. �e recent work LIO [37] learns the ’incentivise reward’ give
to other agents. Our proposed LOPT learns a novel reward shaping based on externality theory, implemented
with a centralized agent with global information.

Besides, our method concerns the structural solutions for ISDs problems. Recent works consider two
main solutions, the centralized boundaries [5, 11] and the decentralized sanctions [3, 15, 35, 32, 6], which
are highly similar to the non-market and market economics solutions to the externality. �e centralized
boundaries aim to build an external authority like the government in an economic society to regularize
agents’ behavior. �e decentralized sanctions aim to establish a self-protection mechanism so that each
agent can punish other agents who harm social welfare. Our work is a centralized boundaries solution, as
we build a centralized tax planner to make the Pigovian tax policy. For previous works in the centralized
boundaries, [5] introduces a global shared arbitrary and polls agents to the limited common resource as the
ISDs problems are highly related to the shared resource allocation, and [11] brings the tax mechanism to
solve the ISDs problems. �ese methods need to design speci�c policies for di�erent environments without
learning. By contrast, our method learns the tax policy in di�erent environments and theoretically adopts
the externality to support the learning process.

3 Externality in MARL
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Figure 1: �e Externality [20]. �e gap between social marginal cost and the private cost is the externality.

�is section illustrates the externality in MARL and builds a formulation to measure the externality,
making it possible to visualize social dilemmas. First, the externality in economics is explained, with the
graphical analysis shown in Figure 1. Let us suppose a �rm i produces some product ai to satisfy the
consumer. At the same time, the �rm also produces pollution, which harms social welfare. We might guess
that the quantity of the produced ai is qi, and the price of ai is a function based on the quantity of the
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produced ai and the market requirement of ai. De�ne the market requirement as qri , and the price function
is denoted as Pi(qri , qi). �e target of the �rm is to maximize such utility:

ui (qi, q
r
i ) = qi × Pi (qri , qi) . (1)

Consider N �rms indexed i = 1, 2, ..., N , and each produces some product ai. Naturally, each �rm aims
to maximize its pro�t. So all of them follow the Equation. 1. However, activities that are not re�ected in
market transactions, e.g., pollution, which harms social welfare or creates jobs that bene�t social welfare,
must occur within the production process. Essentially, social welfare needs to consider these activities. In
this way, we de�ne the in�uence of such activities of each �rm i as a function xi(qi) based on the quantity
of the produced ai. �en, social welfare is acquired:

U =
∑

i ui (qi, q
r
i ) . (2)

�e externality is caused by these activities which are not re�ected in market transactions with economical
de�nition as:

De�nition 1. An externality occurs whenever one economic actor’s activities a�ect another’s activities in
ways that are not re�ected in market transactions [20].

�e in�uence xi can be used to measure the externality. When xi > 0, it is the positive externality. While
xi < 0, it is the negative externality. We can use a function ti(qi) based on the quantity of the produced ai
to express the Pigovian tax, then the a�er-tax utility for �rm i is:

ui (qi, q
r
i ) = qi × Pi (qri , qi)− ti (qi) . (3)

It shows that the value of Pigovian tax is equivalent to the in�uence xi in such formulation. If we can acquire
the exact in�uence xi of the �rm i, the optimal Pigovian tax will be accessed and succeed in internalizing the
externality. Since the externality is also used to express an agent’s in�uence on social welfare, we expand
the de�nition to the MARL area:

De�nition 2. An Externalities occurs whenever an agent’s actions a�ect others in ways that are not re�ected
in local rewards.

Eventually, De�nition .1 makes the most basic de�nition for externality. We use De�nition .2 to follow
the basic de�nition and assume the market has a constant outside opportunity cost, and directly calculate
aggregate externalities, which homogenize the in�uence of di�erent agents.

A decentralized MARL scenario is considered with aN -player partially observable general-sum Markov
game on a �nite set of states S . In each timestep, agents receive their d-dimensional views from the obser-
vation function O : s × {1, · · · , N} → Rd based on the current state s ∈ S . �en, agents select action
{ai}Ni=1 ∈ {πi(a | oi)}Ni=1 from the set of actions {A}Ni=1, which transfers to the next state s′ according to
the transition function P (s|{ai}Ni=1). And agents get their individual extrinsic rewards {ri = Ri(s, a)}.
Each agent aims to maximize its long-term γ-discounted payo�:

Qi(s, a) = E
[∑T

t=0 γ
tri(s

t, at)
∣∣ s0 = s, a0 = a

]
. (4)

�e social welfare of the scenario is de�ned as a global long-term γ-discount payo� as follows:

Q(s, a,x)=E
[∑T

t=0 γ
t
∑N

i=1 ri
(
st, at

)
+xi

(
st, ati

) ∣∣s0=s, a0=a
]
, (5)

where the xi(st, ati) shows the in�uence of agent i on other agents in the scenario, and x is the joint in�uence
{xi}Ni=1. Nevertheless, in such a se�ing, each agent’s behavior must in�uence the rewards of other agents.
As a result, social welfare is equivalent to:

Q(s, a) = E
[∑T

t=0 γ
t
∑N

i=1 ri
(
st, at

) ∣∣ s0 = s, a0 = a
]
.

4



�e optimal joint policy leads to the following social welfare:

Q∗(s, a∗) = E
[∑T

t=0 γ
t
∑N

i=1 ri
(
st, at

) ∣∣ s0 = s, a0 = a∗
]
,

where a∗ is the optimal joint action from the optimal joint policy. From De�nition 2, the externality of the
agent i can be de�ned as follows:

Ei (s, a−i∗, ai) = Q∗ (s, a∗)−Q (s, a−i∗, ai) , (6)

where a−i is the joint action without ai and ai is the current action of agent i. From the (1), an Optimal
Pigovian Tax reward shaping can be proposed to solve the externality in MARL to solve the social dilemmas.
�e optimal Pigovian tax based reward shaping can be wri�en as follows:

Fi (s, a−i∗, ai) = Q∗ (s, a∗)−Q (s, a−i∗, ai) . (7)

�e agent i receives a reward with the reward shaping:

r̂i
(
st, at

)
= ri

(
st, at

)
+ Fi (s, a−i∗, ai) , (8)

which will succeed in internalizing the externality.
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(b) Payo� Matrix a�er Tax

Figure 2: Pigovian Tax/Allowance for Prisoner’s Dilemma.

A typical example called “Prisoner’s Dilemma” is proposed in Figure 2, where the two captured prisoners
must choose to cooperate or defeat. From the original payo� matrix shown in Figure 2(a), although both
of them choosing to cooperate will lead to the best results, choosing to defeat is the dominant action based
on each agent’s self-interest. �erefore, these two agents will drop into the result with the lowest social
welfare. Eventually, the Prisoner’s Dilemma is caused by the di�erence between private and social costs.
�us, the externality is naturally suitable to describe such a situation as each agent does not have access to
the negative externality from their actions. �is way, we calculate their externality by (6) and then get the
Optimal Pigovian Tax reward shaping by (7). �us, the new payo� matrix a�er tax shown in Figure 2(b)
is received. From the payo� matrix a�er tax, the dominant action based on each agent’s self-interest be-
comes “Cooperate.” By internalizing the externality within Optimal Pigovian Tax reward shaping, the social
dilemma in “Prisoner’s Dilemma” can be solved.

4 Learning Optimal Pigovian Tax

In this section, LOPT will be introduced in detail. As illustrated in Figure 3, it contains two major com-
ponents: 1) a centralized agent called Tax Planner is proposed to allocate the Pigovian tax/allowance for
each agent within a functional percentage formulation; 2)a reward shaping structure based on the learned
tax/allowance allocation policy is established to make each agent’s social cost visible, and further to alleviate
the social dilemmas.
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LOPT is proposed to learn the Optimal Pigovian Tax reward shaping in (7) to make each agent’s social
cost visible. �e Pigovian tax rewards can be reshaped as follows:

F i∗
(
st, at−i

∗
, ati
)
=
∑N

j=0 rj
(
st, at∗

)
−
∑N

j=0 r
j
(
st, at−i

∗
, ati
)
.

Pigovian tax reward shaping within percentage tax/allowance is formulated as:

F iθ,δ
(
st, at−i

∗
, ati
)
= −θiri

(
st, at−i

∗
, ati
)
+ δi(s

t, at)
N∑
j=0

θjrj
(
st, at−i

∗
, ati
)
,

where θ is the tax rates on all agents, θi is the speci�c tax rate for agent i, while δ is the allowance rates
on all agents, δi is the speci�c allowance rate for agent i. �e Optimal Pigovian Tax reward shaping can
be learned by learning θ and δ, so as to let all F iθ,δ

(
st, at−i

∗
, ati
)

equal to the F i∗
(
st, at−i

∗
, ati
)
. However, as

the tax and allowance rates are unequal among di�erent agents within di�erent situations, it is necessary to
treat θ and δ as a function based on the current joint state and action. So the Pigovian tax reward shaping
within percentage tax/allowance is rewri�en as:

F iθ,δ
(
st, at−i

∗
, ati
)
= −θi(st, at)ri

(
st, at−i

∗
, ati
)
+ δi(s

t, at)
N∑
j=0

θj(s
t, at)rj

(
st, at−i

∗
, ati
)
.

�eorem 1. If other agents’ actions are treated as part of the environment for any agent i at any timestep t,
there always exists typical θi(st,at) and δi(st,at) to let the F iθ,δ

(
st,at−i

∗
, ati
)
equal to the F i∗

(
st,at−i

∗
, ati
)
.

Proof. For any agent i which creates a negative externality at timestep t: the agent will not receive any
allowance, so the allowance rate function δi(st, ati) is equal to 0. And the tax rate can be wri�en as:

θi(s
t, ati, a

t
−i
∗
) =

Ei(st, at−i
∗
, ati)

ri(st, ati, a
t
−i
∗
)
, (9)

θi(s
t, ati, a

t
−i
∗
) =

Q(st, at∗)−Q(st, at−i
∗
, ati)

ri(st, ati, a
t
−i
∗
)

(10)

And as the interactive in�uence from other agents is not considered, other agents’ optimal action at−i
∗ can

be seen as a part of the environment, and this optimum has a �xed result. �erefore, like the reinforcement
learning method with an advantage function, for each agent i, the advantage function based on the current
joint state and action can also be found in the tax rate, where:

Q(st, at∗) = A0
i (s

t, at)×Q(st, at),

Q(st, at−i
∗
, ati) = A1

i (s
t, at)×Q(st, at),

ri(s
t, ati, a

t
−i
∗
) = A2

i (s
t, at)× ri(st, at).

(11)

�en the tax rate for agent i becomes:

θi(s
t, ati, a

t
−i
∗
) =

(A0
i (s

t, at)−A1
i (s

t, at))×Q(st, at)
A2
i (s

t, at)× ri(st, at)
,

θi(s
t, at) =

(A0
i (s

t, at)−A1
i (s

t, at))×Q(st, at)
A2
i (s

t, at)× ri(st, at)
.

(12)

�en it is proven that for any agent i which generates negative externality, there always exists typical
θi(s

t, at) and δi(s, at) to let the F iθ,δ
(
st, at−i

∗
, ati
)

equivalent to the F i∗
(
st, at−i

∗
, ati
)
.

Similarly, for any agent i which generates positive externality, there also exists typical θi(st, at) and
δi(s

t, at) to satisfy the condition above.
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�is proves that if the interactive in�uence from other agents is not considered, for any agent i at any
timestep t, there always exists typical θi(st, at) and δi(s, at) to let the F iθ,δ

(
st, at−i

∗
, ati
)

equivalent to the
F i∗
(
st, at−i

∗
, ati
)
. �is theorem shows that the Pigovian tax reward shaping within percentage tax/allowance

can reach the optimum in a speci�c condition. �e reward shaping function could be treated as follows:

F iθ,δ
(
st, at

)
= F iθ,δ

(
st, at−i

∗
, ati
)
.

... ...... ...

Reward Function

Pigavian Tax
...

update

update

update

Figure 3: �e Architecture of the LOPT. �e centralized agent Tax planner allocate the Pigovian
tax/allowance within a functional percentage formulation. Reward shaping is established based on the Pigo-
vian tax/allowance to alleviate the social dilemmas.

�e key issue becomes how to learn the tax and allowance rates function. In Figure 3, a centralized tax
planner is built to learn the tax rates and allowance rates functions for Pigovian tax reward shaping. �e
optimal Pigovian tax based on reward shaping is applied to internalize each agent’s externality and solve
the social dilemmas. In this form, the tax planner aims to learn the tax rates θ and allowance rates δ for all
agents within the MARL task.

�eorem 2. If the interactive in�uences from other agents are not considered, when the policy of tax planner〈
θi
(
st,at

)
, δi
(
st,a

)〉
maximizes the social welfare, the typical F iθ,δ

(
st,at−i

∗
, ati
)
will qualitatively equiva-

lent to the F i∗
(
st,at−i

∗
, ati
)
.

Proof. Here we use the method of ”reduction to absurdity.” Suppose that there exists an agent i which
generates negative externality, and its typically learned F iθ,δ

(
st, at−i

∗
, ati
)
does not qualitatively equivalent

to the F i∗
(
st, at−i

∗
, ati
)
. �e reason why agent i will choose the sel�sh behavior which harms social welfare

without reward shaping is because its individual reward shows:

ri(s
t, at−i

∗
, ati) > ri(s

t, at∗). (13)

And the e�ect of the Optimal Pigovian Tax reward shaping is to let any ati ∈ Ai hold the following constraint:

ri(s
t, at−i

∗
, ati) + F iθ,δ(s

t, at−i
∗
, ati) < ri(s

t, at∗). (14)

As we suppose that its typically learned reward shaping does not qualitatively equivalent to the Optimal
Pigovian Tax reward shaping. �at means there exists some ati ∈ Ai, which causes:

ri(s
t, at−i

∗
, ati) + F iθ,δ(s

t, at−i
∗
, ati) > ri(s

t, at∗). (15)

�is means agent iwithin its optimal policy π∗i would like to choose the behavior ati rather than the behavior
in optimal joint actions at∗. �en if we use the tax planner’s learned policy πφpp to describe the tax rate

7



allocation, which means there exists another tax planner’s policy π∗p , le�ing:

E
π
φp
p

[
T∑
t=0

rp
(
stp, a

t
p

)]
< Eπ∗p

[
T∑
t=0

rp
(
stp, a

t
p

)]
. (16)

�us we have shown that if any learned reward shaping of agent i is not qualitatively equivalent to the
Optimal Pigovian Tax reward shaping, the tax planner’s learned policy is not optimal.

�is proves that if the interactive in�uence from other agents is considered, when the policy of tax
planner

〈
θi
(
st, at

)
, δi
(
st, at

)〉
maximizes the social welfare, the typicalF iθ,δ

(
st, at−i

∗
, ati
)

will qualitatively
equivalent to the F i∗

(
st, at−i

∗
, ati
)
.

�is theorem shows that treating the tax planner as a reinforcement learning agent and le�ing it max-
imize social welfare will approximate the ”optimal Pigovian tax” based reward shaping. �erefore, the tax
planner can be de�ned as a centralized reinforcement learning agent as follow: 〈Sp,Op,Ap,Rp〉 , where Sp
is the global state space, and Op is the observation function to get observation op from the global state, Ap
is the action space for the tax planner, and Rp is the reward function for the tax planner. Typically, the tax
planner treats other agent as parts of the environment, then for the observation in timestep t, otp = 〈st, at〉
includes these general agents’ joint state and action in the same timestep, while the action in timestep t
includes the tax rates and allowance rates for all general agents atp = 〈θt, δt〉. Typically, at each timestep t,
the tax planner receives its observation otp from all general agents and outputs the action atp, which contains
all general agents’ tax and allowance rates. �en it synchronously receives the reward rtp, the total rewards
from all general agents, when other agents receive the shaped reward with tax and allowance. �e policy
of the tax planner is de�ned as πp

(
atp
∣∣ otp). �erefore, the target of the tax planner is to maximize the

following objective function:

maxπp Jp := Eπp
[∑T

t=0 rp
(
otp, a

t
p

)]
.

In the training process, we use the approximated state action function Qp(op, ap) to replace the cumulative
reward, and the objective function then becomes:

maxπp Jp := Eπp [Q (op, ap)] .

Typically, the policy gradient-based optimization method is applied to train the tax planner. �e gradient
loss is therefore de�ned as follows:

L(φp) = E
π
φp
p

[
∇
π
φp
p

log πp
(
atp
∣∣ otp)Qp,πpφp (otp, atp)] ,

where the tax planner’s policy function parameters are represented by φp. Besides, as the tax planner has
to maintain the balance on tax and allowance, the tax planner needs to minimize the following entropy in
the learning process:

f(πp) =
∣∣∣∑T

t=0

∑T
i=0 F

i
θ,δ

(
ot, at−i

∗
, ati
)∣∣∣ ,

As a result, the gradient loss L (φp) can be denoted as:

E
π
φp
p

[
∇
π
φp
p

log πp
(
atp | otp

)
Qp,π

φp
p
(
otp, a

t
p

)]
+ ηf

(
π
φp
p

)
, (17)

where η is a hyperparameter weighting the entropy f(πp).
In light of the learning process of the tax planner, other general agents are trained within the approxi-

mated Optimal Pigovian Tax reward shaping as follows:

L (φi) = E
π
φi
i

[
∇
π
φi
i

log πi (ai | s) Q̂i,π
φi
i (s,a)

]
, (18)
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Algorithm 1 LOPT: Learning Optimal Pigovian Tax
1: Initialization: all general agents’ policy parameters {φi}, tax planner’s policy parameters φp;
2: for each iteration do
3: Generate a joint state-action trajectory with shaped rewards and tax/allowance rates as {τ};
4: for each state-action pair with shaped reward for each agent i, i.e., 〈si, a, ri + Fi〉 in {τ} do
5: Compute the new φ̂i by gradient ascent on (18);
6: end for
7: for each tax planner state-action pair with global reward 〈op, ap, rp〉 in {τ} do
8: Compute the new φ̂p by gradient ascent on (17);
9: end for

10: φi ← φ̂i, φp ← φ̂p, for all i ∈ N.
11: end for

where function Q̂i,π
φi
i (s,a) is de�ned as

ri(s,a) + F i
(
s,a−i

∗
, ai
)
+ γmaxa′ Q̂

i,π
φi
i (s′,a′) .

�e typical learning process of LOPT is shown in Algorithm 1. In the next section, experiments in the Escape
Room environment and the challenging Cleanup environment will show the performance of LOPT.

5 Experiment

5.1 Environments

In this paper, we have veri�ed the performance of LOPT in two popular environments in self-interested
multi-agent reinforcement learning:
i) Escape Room (ER) [37]: We �rst experiment on the Escape Room, ER(N , M ) shown in Figure 4(a), where
N > M . �e target forN agents in this Escape Room environment is to successfully open the “door” by one
or more agent(s) with the help of otherM agents who pull the “lever” and then “escape”. At each timestep t,
there are 3 available states for each agent: door, lever, and start (the initial state). �e action for each
agent is to choose one of the 3 states as its new state, where the agent can keep its current state by selecting
the same state as its action, and such behaviors receive a 0 reward. An agent receives a +10 reward if it
moves to the door state and more than M other agents stay at the lever state. Otherwise, the reward for
any movement which changes to a new state is −1. If any agent successfully opens the door, the episode
will be terminated. If not, the episode ends a�er 5 timesteps, which is the max episode length. We build
our LOPT method for the Escape Room environment based on the open-source implementation of [37], and
conduct experiments on both N = 2,M = 1 and N = 3,M = 2 se�ings.

-1-1 -1 -1

-1 -1+10

(a) Escape Room (N = 3,M = 2).

Agents

Cleaning 
Beam

Apple

Waste

River

(b) Cleanup (N = 5) (90◦ Counterclockwise Rotated).

Figure 4: Simulated environments.
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ii) Cleanup [10]: Furthermore, we conduct experiments on the Cleanup game with N agents shown in Fig-
ure 4(b). In the Cleanup environment [10], agents get +1 reward by collecting an apple, which spawns from
the pre-de�ned apple spawn point in the map, and aim to collect apples from the �eld as more as possible. �e
apples are spawned at a variable rate, which decreases linearly from the parameterappleRespawnProbability
as the aquifer �lls up with waste over time at a certain rate de�ned by the parameterwasteSpawnProbability.
So, if the levels of waste reach the parameter thresholdDepletion, no more apples or wastes will be
spawned. If the waste density is no more than the parameter thresholdRestoration, the apple spawn
probability restores to the parameter appleRespawnProbability. Otherwise, the apple spawn prob-
ability is:

pappleSpawn =
(1−wasteDensity)× appleRespawnProbability

thresholdDepletion− thresholdRestoration . (19)

At each timestep t, agent i observes its surroundings as a normalized RGB image input oit with a side length
of view size. Meanwhile, an agent additionally observes other agents’ actions if they are visible to the
agent. �en, an agent is able to move/rotate in the map, stay at its current position, and do nothing, or
fire cleaning beams to clean wastes (the beam cannot penetrate wastes). Based on the open-source
Cleanup implementation [31], we implement our LOPT method and run experiments with 3 di�erent se�ings
ranging from easy to hard: 1). N = 2 agents with a 7 × 7 map; 2). N = 2 agents with a 10 × 10 map; 3).
N = 5 agents with an 18× 25 map, where an additional “fire fining beam” action is equipped, and
an agent can �ne other agents by taking this action in this more challenging se�ing. As a result, an agent
will receive a −1 reward for �ring the �ning beam, and the agent(s) hit by the �ning beam will receive a
−50 reward. But no agent will be penalized if the �ning beam fails to hit any individual. In addition, to
test our proposed LOPT with the �xed-orientated assumption in [37], we modify the N = 2 agents with a
10× 10 map se�ing by se�ing the orientation of all agents as “up” and disabled rotation actions. Details for
our 4 di�erent experiment se�ings are shown in Table. 1.

Parameters N = 2, 7× 7 map N = 2, 10× 10 map N = 2, 10× 10 map
�xed orientations N = 5, 18× 25 map

appleRespawnProbability 0.5 0.3 0.3 0.05
wasteSpawnProbability 0.5 0.5 0.5 0.5

thresholdDepletion 0.6 0.4 0.4 0.4
thresholdRestoration 0.0 0.0 0.0 0.0

rotationEnabled 3 3 7 3

view size 4 7 7 7
max steps 50 50 50 1000

Table 1: Experiment Se�ings for Cleanup Environment.

5.2 Implementations

We implemented the LOPT in both Escape Room and Cleanup environments. At each timestep t, the global
observation otglobal from the joint state st, and the joint action at are fed to the tax planner as input. To be�er
handle our challenging environments, we provide a “bank” variable to the tax planner to save rewards from
taxes as available budgets for allowances, which supports the more sophisticated tax/allowance mechanism.
�en, the current bank state otbank and joint reward rt are also introduced to the observation:

otp =
〈
otglobal, a

t, otbank, r
t
〉
.

�e tax planner outputs the joint tax rate θt and the joint allowance rate δt. In addition, the tax planner
outputs. Also, it outputs a percentage for rewards withdrawn from the bank as the budget ratio abankt . So,
the action for the current time step is:

apt =
〈
θt, δt, atbank

〉
.
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In addition, the entropy f(πp) is weighted by a hyperparameter η in Equation. 17 Concretely, in both envi-
ronments with N agents, otbank and at are scalers, while at, rt, θt and δt are N dimensional vectors. In the
Escape Room games, the tax planner agent observes a multi-hot vector global states otglobal ∈ {0, 1}d from
the joint state st, where d = 3N . And in the Cleanup games, the global observation otglobal is the global
visual normalized RGB observation with the same width and height of the applied map.

In the Escape Room environment, the policy network for the tax planner is de�ned as follows: 1). a
dense layer h11 of size 64 takes otglobal as input and 3 dense layers h1i, i = 2, 3, 4 of size 32 for at, otbank, and
rt respectively; 2). the outputs of dense layers h1i, i = 1, 2, 3, 4 are concatenated and fed to a dense layer
h2 of size 32; 3). the output of dense layer h2 is fed to 3 dense layers h3i, i = 1, 2, 3 of sizes 1, N , N and
activation functions sigmoid, sigmoid, softmax, then output as abankt , θt, δt respectively. While in the
Cleanup environment, the policy network for the tax planner is de�ned as follows: 1). the global observation
otglobal is �rstly fed to a convolutional layer conv1 of kernel size 3 × 3, stride 1 and 6 �lters; 2). the output
of the convolutional layer conv1, at, otbank, and rt are fed to 4 two-layer dense layers h2i, i = 1, 2, 3, 4 of
size 32 and 32 respectively; 3). the outputs of dense layers h2i, i = 1, 2, 3, 4 are concatenated and fed to an
LSTM of cell size 128; 4). at last, the output of the LSTM is fed to the dense layers and output as abankt , θt,
δt respectively.

�e se�ings of hyperparameters for baseline methods follow their previous work [10, 12, 37, 9]. For all
experiments, the tuned hyperparameters of all baselines and LOPT are given in Table. 2-4, where: α is the
learning rate; αschedule is a list that contains the step and weight pairs for the learning rate scheduler; η is
the weight for the entropy f(πp); ε in [37] decays linearly from εstart to εend by εdiv episodes; β is coe�cient
for the entropy of the policy.

Hyperparameters N = 2 N = 3
PG PG-d PG-c LIO LIO-dec LOPT PG PG-d PG-c LIO LIO-dec LOPT

α 1e−4 1e−4 1e−3 1e−4 1e−4 1e−3 1e−4 1e−4 1e−3 1e−4 1e−4 1e−3
η - - - - - 0.95 - - - - - 0.95

εstart 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5
εend 0.05 0.05 0.1 0.1 0.1 0.05 0.05 0.05 0.1 0.3 0.3 0.05
εdiv 100 100 1000 1000 1000 100 100 100 1000 1000 1000 100
β 0.01 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.1 0.01 0.01 0.01

Table 2: Hyperparameter Se�ings for Escape Room Environment.

Hyperparameters 7× 7 map 10× 10 map
AC AC-d AC-c IA LIO PPO MOA SCM LOPT AC AC-d AC-c IA LIO PPO MOA SCM LOPT

α 1e−3 1e−4 1e−3 1e−3 1e−4 2.52e−3 2.52e−3 2.52e−3 2.52e−3 1e−3 1e−3 1e−3 1e−3 1e−4 1.26e−3 1.26e−3 1.26e−3 2.52e−3
αschedule - - - - - [ (5e5, 1.26e−3), (2.5e6, 1.26e−4) ] - - - - - [ (1e7, 1.26e−4) ] [(5e5, 1.26e−3), (1e7, 1.26e−4)]

η - - - - - - - - 0.95 - - - - - - - - 0.95
εstart 0.5 0.5 0.5 0.5 0.5 - - - - 0.5 0.5 1.0 0.5 0.5 - - - -
εend 0.05 0.05 0.05 0.05 0.05 - - - - 0.05 0.05 0.05 0.05 0.05 - - - -
εdiv 100 100 100 1000 100 - - - - 5000 1000 1000 5000 1000 - - - -
β 0.1 0.1 0.1 0.1 0.1 1.76e−3 1.76e−3 1.76e−3 1.76e−3 0.01 0.01 0.1 0.01 0.01 1.76e−3 1.76e−3 1.76e−3 1.76e−3

Table 3: Hyperparameter Se�ings for Cleanup(N = 2) Environment.

Hyperparameters PPO MOA SCM LOPT
α 1.26e−3 1.26e−3 1.26e−3 1.26e−3

αschedule [ (2e7, 1.26e−4), (2e8, 1.26e−5) ] [(2.5e7, 1.26e−4)]
η - - - 0.95
β 1.76e−3 1.76e−3 1.76e−3 1.76e−3

Table 4: Hyperparameter se�ings for Cleanup(N = 5).
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Figure 5: Results on Escape Room Environment.

5.3 Baselines

We compared the following baselines in our experiments: i). We �rst introduce three baselines of common
reinforcement learning algorithms in previous works [10, 12, 37, 9], where Policy Gradient (PG) is applied in
the Escape Room games and Actor Critic (AC) as well as Proximal Policy Optimization (PPO) are evaluated
in the Cleanup environment; ii). We then compare state-of-the-art methods for dealing with social dilemmas,
including LIO [37], IA [10], MOA [12], and SCM [9]. LIO learns to incentive other agents by giving one’s
own rewards to other agents so that cooperation emerges among agents and the social dilemma is alleviated.
Meanwhile, a fully-decentralized LIO (LIO-dec) implementation [37] is also compared. Inequity Averse (IA)
applies inequity-averse social preferences, which promotes solving social dilemmas by encouraging long-
term cooperation [10]. Model of Other Agents (MOA) tries to solve social dilemmas by assessing causal
in�uence on other agents via counterfactual reasoning [12]. Social Curiosity Module (SCM) combines the
intrinsic rewards of curiosity and empowerment [9]; iii). In the Escape Room environment, LIO and LIO-
dec are tested. Besides, agents who have extended discrete or continuous give-reward actions using Policy
Gradient (PG-d, PG-c) [37] are also compared. In the Cleanup(N = 2) environment, LIO, IA, MOA, SCM,
as well as extended Actor Critic methods (AC-d, AC-c) [37] are compared. In a more complex Cleanup(N =
5) environment, MOA and SCM are testi�ed.

5.4 Results

Our experiments in both environments demonstrate that LOPT is able to solve the given social dilemmas and
achieve be�er social welfare compared with all baselines. �is arose in both ER and Cleanup environments
because the tax planner in LOPT can reach near-optimal tax/allowance rate to model the Optimal Pigovian
Tax reward shaping which internalize the externalitie. Also, LOPT results in fewer betrayals, which makes
the learning process more stable. Escape Room: In ER(N = 2,M = 1) and ER(N = 3,M = 2), we observed
from Figure 5(a) and Figure 5(b) that LOPT quickly converges to optimal values (8 and 9 for se�ings ofN = 2
and N = 3 respectively).

�e Optimal Pigovian Tax reward shaping from the tax planner is thought to help LOPT escape the
given social dilemmas. PG Agents, optimized with policy gradient, strive to maximize their own rewards,
leading to negative social welfare, resulting in a social dilemma. By augmenting the agents with discrete
or continuous give-reward actions, the interplay of PC-d or PC-c agents may successfully open the “door”
and get positive rewards. �e results are still inconsistent, and these methods cannot properly solve the ER
games. LIO agents and decentralized LIO-dec agents are able to ”escape rooms” and reach a near-optimal
state, respectively. However, the LIO and LIO-dec methods, while having more variance, are not stable
and cannot prevent betrayals among agents from occurring, which results in �uctuations and failures to
converge to the optimum.
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Figure 6: Rewards for Each Agent with Di�erent Behaviors in Escape Room Environment. LOPT internalizes
externalities and redistributes rewards among agents with taxes and allowances.

Additionally, by examining the behaviors of agents (shown in Figure 6), we demonstrate how the pro-
posed LOPT internally reduces externalities while redistributing extrinsic rewards. Concretely, for the “Win-
ner” agents who open the door and cause negative externalities, heavy taxes will be levied. On the contrary,
the “Cooperator” agents who pull the lever and contribute to positive externalities will receive allowances.
It is shown that the LOPT can provide accurate approximations of agents’ externalities and then internalize
them with Pigovian taxes and allowances by reward shaping.
Cleanup. From the learning curves in Figure 7, we observe that LOPT is able to reach be�er social welfare in
all our se�ings. We then compare the proposed LOPT with PPO, SCM, and MOA baselines with scalability,
in the more complex Cleanup(N = 5) scenario, where a larger map and a lower apple respawn rate are
applied. Figure 7(d) shows that our proposed LOPT can scale to more complex scenarios and internalize
the approximated externalities by learning Optimal Pigovian Tax reward shaping, which e�ectively helps
agents to learn in social dilemma problems.

To illustrate how the proposed LOPT estimates externalities and a�ects the behaviors of agents, we
explore the relationship between the behaviors and reward redistributions of agents. Figure 8(a) visualizes
an example rollout withN = 5 agents, and it is evident that the proposed LOPT causes divisions of laborers
(cleaner, harvester, and part-time) among agents by internalizing externalities so as to approach a be�er To
�nd out how the LOPT internalizes the approximated externalities for each agent and causes divisions of
laborers, the optimized tax/allowance mechanism is explored in Figure 8(c) for agents with di�erent socially
contributed behaviors: apple-collecting behaviors are taxed for causing negative externalities and social-
good cleaning behaviors are allowanced for yielding positive externalities.

Also in Cleanup(N = 5) environment, we visualize and analyze the results from an example rollout in
Figure 8. In addition, Figure 9(a), Figure 9(b), and Figure 9(c) show the relationship among the environmen-
tal states of the numbers of apples and wastes and the tax/allowance schemes given by the LOPT, where
proper tax/allowance schemes are given for agents with di�erent socially contributed behaviors. Figure 9(d)
shows that the LOPT encourages agents to clean wastes e�ciently and maintains the density of wastes at
a relatively low level so that the apples are spawned at a relatively high rate.
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Figure 7: Results on Cleanup. (7(a), 7(b)) shows the learning curves for the proposed LOPT in Cleanup(N =
2); (7(c)) shows the learning curves for LOPT in Cleanup(N = 2) with the �xed-orientated assumption.
(7(d)) scales to a more complex environment with N = 5 agents.
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(b) Extrinsic Rewards and Shaped Rewards for Each Agent
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Figure 8: An Example Rollout for Cleanup(N = 5) Environment. (8(a)) visualizes this example rollout,
where agents apply di�erent social-good behaviors and divisions of laborers (cleaner, harvester, and part-
time) emerge. (8(b)) shows the approximated Optimal Pigovian Tax reward shaping by the proposed LOPT.
(8(c)) shows the reward shaping process of the LOPT in this episode, which demonstrates how the LOPT
internalizes externalities for agents with di�erent socially contributed behaviors.
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(b) Tax/Allowance Schemes with Envi-
ronmental States for Harvester Agents
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(c) Tax/Allowance Schemes with Envi-
ronmental States for Part-time Agents
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(d) Number of Apples and Wastes in the Environment

Figure 9: An Example Rollout for Cleanup(N = 5) Environment, supplemental results for Figure 8. (9(a),
9(b), 9(c)) illustrate relationship of environmental states (the number of apples/wastes) and the tax/allowance
schemes given by the LOPT for 3 types of agents with di�erent socially contributed behaviors. (9(d)) shows
the amount for apples and wastes during the episode.

Furthermore, we provide visualized and analyzed results from example rollouts in Cleanup(N = 2) with
both the 7×7 and the 10×10 maps. As illustrated in Figure 10-13, our proposed LOPT is able to internalize
externalities in all of our Cleanup experiment se�ings and provide approximated Optimal Pigovian Tax
reward shaping to greatly alleviate the social dilemmas.
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Figure 10: An Example Rollout for Cleanup(N = 2) Environment with A 7× 7 Map.
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Figure 11: An Example Rollout for Cleanup(N = 2) Environment with A 10× 10 Map.
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Figure 12: Number of Apples and Wastes in the Environment
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Figure 13: An Example Rollout for Cleanup(N = 2) Environment with A 10×10Map and Fixed Orientations.

As a result, LOPT internalizes externalities and provides approximated Optimal Pigovian Tax reward
shaping (shown in Figure 8(b)) to guide the agents to be�er results.

6 Conclusion

In this paper, the externality theory is �rst introduced to measure the in�uence of agents’ behavior on social
welfare. And based on the externality theory in the MARL area, the Learning Optimal Pigovian Tax method
is proposed to deal with social dilemmas. A centralized agent, the “Tax Planner”, is constructed to learn the
tax/allowance allocation policy for each agent. �en through the Optimal Pigovian Tax reward shaping,
each agent’s externality is internalized, which encourages the agents to bene�t the social welfare. Experi-
ments have shown the superiority of the proposed mechanism for alleviating social dilemmas in MARL. In
the future, we aim to build a decentralized Pigovian tax/allowance mechanism to learn reward shaping to
internalize agents’ externality with lower computation complexity.
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