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Abstract
This work explores the large-scale multi-agent communication mechanism for multi-agent 
reinforcement learning (MARL). We summarize the general topology categories for com-
munication structures, which are often manually specified in MARL literature. A novel 
framework termed Learning Structured Communication (LSC) is proposed by learning 
a flexible and efficient communication topology (hierarchical structure). It contains two 
modules: structured communication module and communication-based policy module. The 
structured communication module learns to form a hierarchical structure by maximizing 
the cumulative reward of the agents under the current communication-based policy. The 
communication-based policy module adopts hierarchical graph neural networks to gener-
ate messages, propagate information based on the learned communication structure, and 
select actions. In contrast to existing communication mechanisms, our method has a learn-
able and hierarchical communication structure. Experiments on large-scale battle scenarios 
show that the proposed LSC has high communication efficiency and global cooperation 
capability.

Keywords  Learning Communication Structures · Multi-agent Reinforcement Learning · 
Hierarchical Structure · Graph Neural Networks

1  Introduction

Reinforcement learning (RL) [31] has achieved remarkable success in solving single-agent 
sequential decision problems under interactive and complicated environments, such as 
games [20, 28] and robotics [16]. Many agents are involved in the learning tasks in many 
real-world applications, such as intelligent transportation systems [1] and unmanned sys-
tems [27]. Such settings naturally lead to the popular multi-agent reinforcement learning 
(MARL) problems. One critical research challenge in MARL is to design scalable and effi-
cient learning cooperative schemes under a non-stationary environment (caused by partial 
observation and/or the other agents’ continually changing policies).
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Communication is one efficient way to improve cooperation. [34, 44, 47] adopt pre-
defined communications to gain better cooperation performance. However, pre-defined 
communication is not feasible when it meets complex problems [11]. Benefiting from the 
progress of Deep Learning [14] and its combination with RL, i.e., deep reinforcement 
learning (DRL) [20], learning to communicate from scratch during interaction is acces-
sible. Thus many communication learning methods [5, 30] emerged.

In this paper, we categorize the existing communication learning methods from the per-
spective of communication topology1 into four patterns: (1) Fully-connected (FC): DIAL 
[5], TarMAC [4], and SchedNet [12] use fully-connected communication structures (see 
Fig. 1a). Agents communicate with all the others, thus requiring high bandwidth when the 
number of agents is large. (2) STAR: CommNet [30] and IC3 [29] take STAR communica-
tion structures (see Fig. 1b). All agents must transmit messages to the virtual central agent, 
incurring a significant communication bottleneck. (3) TREE: ATOC [11] uses a TREE 
communication structure. Agents communicate with neighbors. However, communication 
must be allowed sequentially among groups, leading to high time complexity. (4) NBOR: 
DGN [10] uses the NBOR communication structure. Agents communicate with neighbors 
concurrently to reduce communication costs.

Different topologies usually result in different cooperation performance. Intuitively, 
the topology influences cooperation by affecting the accessibility (whether a message can 
be received by all the agents) and comprehension (the extraction of valuable information) 
of the messages. The fully-connected structure and STAR structure ensure messages are 
accessible to all agents. While, as discussed in ATOC [11], extracting valuable informa-
tion (useful for better decisions) would become difficult once a large number of messages 
emerge concurrently. TREE structure and NBOR structure constrain the communication to 

(a) (b) (c)

(d) (e)

Fig. 1   Different communication topology structures, and LSC falls into the hierarchical one

1  We interchangeably abuse the term topology and structure.
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the neighbors and ease the difficulty of message comprehension. To improve the message 
accessibility, they define neighbors as K-nearest agents and utilize multi-round communi-
cations. However, due to the lack of a pooling mechanism, the messages from many hops 
away would get lost easily (far away messages may not be accessible).

This paper aims to learn a communication structure that benefits large-scale multi-agent 
cooperation with high communication efficiency. We propose the Learning Structured Com-
munication (LSC) approach that learns a hierarchical communication structure the goal. It con-
tains a structured communication2 The structured communication module learns to establish a 
hierarchical structure (Fig. 1e) in a distributed fashion. Specifically, a cluster-based routing pro-
tocol (CBRP [24]) is adopted to establish the hierarchical structure combined with a learnable 
weight generator. The hierarchical structure divides agents into high-level and low-level agents. 
We denote a high-level agent and all the low-level agents in its communication field as a group. 
Once the hierarchical structure is established, the Communication-based module learns the 
communication and action policies. The communication policy here includes inter-group com-
munication and intra-group communication. Inter-group communication helps agents to capture 
global information, while intra-group communication helps fine-grained message exchanges. 
After communication, agents gain a better state perception. The action policy further takes the 
state’s perception to learn a better strategy. We evaluate our LSC on cooperation performance 
and communication efficiency in large-scale battle scenarios. Empirical results show that our 
LSC achieves better cooperation performance than the baselines and obtains high communica-
tion efficiency. The main highlights of this paper are summarized below. 

(1)	 We summarize existing categories of communication topology in the MARL litera-
ture, namely (i) FC, (ii) STAR, (iii) TREE, and iv) NBOR, which are often manually 
specified and fixed. We believe this perspective is enlightening for the design of a new 
communication topology. It has not been well organized in the existing literature.

(2)	 We propose a new hierarchical communication method, LSC, which improves coopera-
tion performance with high communication efficiency compared with the existing four 
topologies. It adopts a learnable hierarchical communication structure which benefits 
the communication efficiency and gains the dynamic3 property. Moreover, a hierarchi-
cal graph neural network is adopted to generate and propagate messages inter-group 
and intra-group, leading to better cooperation.

(3)	 Experimental results show that the proposed LSC improves cooperation performance 
with high communication efficiency in large-scale battle scenarios. Moreover, our 
experiment reveals the relationship between topology choosing and the receptive field.4 
They can further help to choose appropriate communication learning algorithms in 
practical scenarios.

To our best knowledge, this paper is the first work about structured communication learning in 
MARL. We note that the idea of adopting hierarchical structure learning on MARL recently 
appears in HAMA [25]. The differences are obvious and fundamental: first, their hierarchy 
structure is used for learning agents’ relations but not for communication; second, their hierar-
chy design is fixed, other than adaptive and dynamically learned as done in this paper.

2  In this paper, structured communication refers to communicating in a structured (hierarchical) topology. 
module and a communication-based policy module.
3  The ‘dynamic’ property means the structure can change rather than remain unchanged.
4  The field that an agent can precept from observation.
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2 � Background

2.1 � Partial observable stochastic games (POSG)

Agents learn policies by maximizing cumulative rewards via interacting with environment 
and other agents. POSG can be characterized as a tuple

where I  denotes the set of agents indexed from 1 to n; S is the finite set of states; b0 rep-
resents the initial state distribution and A denotes the set of joint actions. Ai is the action 
space of agent i, � = ⟨a1,⋯ , an⟩ denotes a joint action; O denotes the joint observations 
and Oi is the observation space for agent i, � = ⟨o1,⋯ , on⟩ denotes a joint observation; P 
denotes the Markovian transition distribution with P

(
s̃, �||s, �

)
 being the probability of state 

s transiting to s̃ with result � after taking action � . Pe(o|s) is the Markovian observation 
emission probability. R ∶ S ×A → ℝn means the reward function. � = ⟨r1,⋯ , rn⟩ denotes 
the joint reward each agent. The overall task of MARL can be solved by proper objec-
tive modeling, which may indicate, e.g., cooperative, competitive, or mixed relationships 
among agents.

2.2 � Reinforcement learning

Reinforcement learning (RL) [31] is a powerful tool to solve the POSG problem. It consid-
ers that only one single agent interacts with the environment. The goal of RL is to find a 
policy that maximizes the return of agents. In each step, agent observes state s and takes an 
action a based on policy � . It receives reward r and next state s̃ from the environment. We 
take Q-learning [42] as an example. Instead of finding an optimal policy directly, it seeks 
the optimal state-action value function Q⋆(s, a) . Then the optimal policy is the greedy 
action on the Q⋆(s, a) . To get the optimal state-action value function, Q-learning maintains 
an estimate of it Q�(s, a;) , and updates it by

where ỹ = r + 𝛾 maxã Q(s̃, ã;𝜃).
Deep Q-Learning (DQN) [20] use a deep neural network to approximate the state-value 

function. Then, the Q-Network can be represented by Q�(s, a;�) , the � here denotes the 
network parameters. To avoid chasing a non-stationary target, DQN copies the param-
eter � to the �′ and keeps the �′ fixed for specific rounds. The target calculation now is 
ỹ = r + 𝛾 maxã Q

(
s̃, ã;𝜃�

)
 . Another technique used in DQN is the experience replay: the 

agent stores the transitions in memory and samples a batch of data to train. The off-policy 
nature of DQN improves the sample efficiency. Further, many algorithms [3, 8, 35, 41] 
have been proposed to improve the performance of DQN.

2.3 � Graph neural networks

Graph neural networks (GNNs) [15, 26] is the targeted neural network for graph data. Many 
machine learning problems are established with a natural graph structure, while the GNNs 
have been broadly adopted. Many variants of GNNs have been proposed, and we here take 

⟨
I,S, b0,A,O,P,Pe,R

⟩

min L(𝜃) = �s,a,r,s̃

[
ỹ − Q(s, a;𝜃)

]
,
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the popular graphnets [2] as the main framework. Graph data is often defined as a tuple 
G = (u,V, E) , where u denotes the global attribute. V = {vi}i=1∶Nv and E = {(ek, rk, sk)}k=1∶Ne 
denote the node feature set and the edge feature set ( ek is the edge feature; rk and sk are the 
receiver’s index and sender’s index).

The Graphnets treats GNNs as the combination of multiple “graph network (GN)" 
blocks. The GN blocks contain three updating and aggregation functions, which operate 
on different levels (node, edge, and global graph level). �e→v , �e→u , �v→u are denoted as the 
aggregators for “edge to node", “edge to global" and “node to global" respectively. Dif-
ferent from ē� = 𝜌e→u, v̄� = 𝜌v→u that aggregate across all edges and nodes, ēi� = 𝜌e→u(E�

i
) 

aggregates the received/sent edges only for node i. For invariant of inputs permutation, the 
aggregator can be mean, element-wise summation, attention [36]. The updating functions 
�e(ek, vrk , vsk , u) , 𝜙

v(ēi
�, vi, u) , 𝜙u(ē�, v̄�, u) update edges, nodes and global features respec-

tively. The typical GN blocks keep the following update scheme

By adjusting the update scheme, many variants of GN blocks can be obtained, e.g., MPNN 
[7], NLNN [40], relational network [23], and etc.

3 � Related work

Our work is mainly related to multi-agent reinforcement learning literature. We organize 
the related works as three subsections: (1) learning for consensus; (2) learning for commu-
nication; (3) graph neural network in MARL.

3.1 � Learning for consensus

These approaches try to let agents achieve consensus and cooperation directly from local 
observations. Although communication is not allowed during execution, other agents’ 
information can be accessed during training in many scenarios. This phenomenon makes 
the centralized training and decentralized execution framework (CTDE) popular in the 
multi-agent reinforcement learning community. The CTDE methods often construct a cen-
tralized critic to guide the decentralized actor. MADDPG [18] first extends the popular RL 
method, DDPG [16], to the multi-agent settings by using joint observation and actions to 
construct a centralized critic. MAAC [9] and PIC [17] further adopt attention mechanism 
[11] and graph neural network [2] to better model the centralized critic. COMA [6] com-
putes counterfactual advantage value to help address the credit assignment issue of multi-
agent reinforcement learning. HAMA [25] adopts a hierarchical graph attention network 
to leverage the group relationships. However, the groups are clustered by predefined rules, 
which is not feasible for complex scenarios.

3.2 � Learning for communication

Communication has been shown helpful in forming a better cooperation policy. Traditional 
studies [34, 44, 47] adopt a predefined communication policy to solve matrix games. How-
ever, when it meets complex scenarios (e.g., autonomous driving, predator-and-prey), the 
predefined communication policy would be significantly challenging to select, as discussed 

�e
→ �e→v

→ �v
→ �e→u

→ �v→u
→ �u.
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in [5, 11]. With the development of Deep Neural Network [14], learning to communicate is 
accessible. Many works adopt DNN to generate the communication protocol (who, when, 
and what to communicate). These methods can be categorized as communication for coop-
eration and communication for language [13, 21, 21]. We here focus on the former: Agents 
need to learn to communicate with others and process the received messages to enhance 
collaboration. We then discuss the communication for cooperation from the perspective of 
communication topology and categories existing methods as (1) fully-connected (FC); (2) 
STAR; (3) TREE; and (4) NBOR.

Fully-connected structures assume that each agent communicates with all the other 
agents DIAL [5] learns what to communicate by back-propagating all the other agents’ gra-
dients to the message generation network. SchedNet [12] learns a weight-based scheduler to 
determine the communication priority based on DIAL. However, the way of using the com-
munication bandwidth is not scalable. TarMAC [4] adopts soft attention mechanism [36] 
(quantify interdependence of two elements) to better aggregate other agents’ messages.

STAR structures assume agents only communicate with the single central agent as the 
hub CommNet [5] aggregates all the agents’ hidden states as the global message, thus can 
only be applied to cooperative scenarios. Extended from CommNet, IC3 [29] adds a com-
munication gate to decide whether the agents communicate. However, letting one agent 
handle all the messages in the STAR network cause a bottleneck at the central agent, both 
in communication bandwidth and information extraction.

TREE and NBOR structures assume communication only happens to neighbors, which 
avoids the single-point bottleneck issue The K-nearest neighbor mechanism is often used 
to define neighbors. However, agents can distribute unevenly, and thereby choosing a 
good K is sometimes not easy in practical scenarios. ATOC [11] adopts TREE structures, 
whereby each group in a chain (thus not hierarchical) performs communication sequen-
tially. Although the intersection of two groups helps inter-group communication, the large 
time complexity would be unbearable for real-time systems. DGN [10] uses NBOR com-
munication with the graph convolution network (GCN) to address the difficulties above. 
Multiple rounds of communication are adopted to enlarge the communication field. As a 
common issue in GCN, shallow GCN without pooling layers can hardly explore rich global 
information, as discussed in H-GCN [46].

When the number of agents increases, three critical issues happen for communication 
MARL: redundant messages, the difficulty of valuable information extraction, and the 
hardness of forming global cooperation. The redundant message issue is mainly because 
nearby agents got similar observations and messages. However, most of the existing works 
do not consider this issue. For FC and STAR topology, many redundant messages will con-
sume communication resources. The difficulty of valuable information extraction often 
happens in FC and STAR topology. When there are many agents, an agent’s decision is 
mainly influenced by a limited number of agents’ messages. Other messages can be treated 
as noises to the decision. However, FC and STAR methods treat all the messages equally, 
leading to challenges to valuable information extraction. For example, a car (A) may slow 
down when it receives a message that one car speeded up towards it even if that car is 
far away from car A; The hardness of forming global cooperation often happens in TREE 
and NBOR topology. Agents need to use local communication to form global cooperation, 
which raises the difficulty of aggregating multi-hop messages [37, 39]. Although not in 
the reinforcement learning literature, [22, 43] propose region-based communication that 
helps better aggregate communication. However, careful design is hard to obtain when it 
comes to complex and large-scale multi-agent systems. Moreover, learning the powerful 
aggregation methods is also hard in the graph neural networks’ nature [46]. Unlike existing 
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methods, our LSC adopts the learnable hierarchical communication topology. The hierar-
chical structure assigns high-level and low-level roles to agents. It allows a similar aggre-
gation procedure like hierarchical graph neural network [46]. By adopting a hierarchical 
graph neural network, our LSC propagates messages inter-group and intra-group, leading 
to better cooperation in the large-scale setting.

3.3 � Graph neural network in MARL

GNN is powerful in extracting relations among entities, with emerging applications 
in MARL. RFM [32] designs an auxiliary action prediction task (predict other agents’ 
actions) with graph networks [2], which can help agents learn interpretable intermediate 
representations. MAGNet [19] uses heuristic rules to learn the relevant graph to help actor 
and critic learning. DGN [10] learns the GCN together with the relation kernel by minimiz-
ing the TD error, which can be applied to dynamic multi-agent RL problems. HAMA [25] 
adopts a hierarchical graph attention network based on a pre-defined hierarchical graph to 
help agents capture interrelations. The pre-defined and fixed group scheme used in HAMA 
limits its adaptability in dynamic scenarios.

This paper aims to learn the communication topology (with a hierarchy design) and the 
communication-based policy via GNNs. The message communication mechanism in the 
policy, the underlying topology, and the way of using GNN in this paper are all novel and 
different from the existing works.

4 � Problem formulation

This paper aims to learn communication structures and the communication-based policy 
that benefit large-scale cooperation with high communication efficiency. Denote the com-
munication structure at time t as Et and the communication-based policy as �(⋅|Et, �t) . 
Consider there are n agents interacting in the environment with transition function 
p(s, �|st, �t) and reward function ri(st, �t) for each agent i. Our goal is to maximize the sum 
of all agents’ cumulative rewards with high communication efficiency, which can be for-
mulated as follows:

where the p is the transition function of the environment and ri is the reward function of 
agent i. The g(Et) is the communication cost (here, we consider the total number of mes-
sages) function that returns a positive value if the communication cost is bearable. The 
constraint programming is challenging, and here we consider a simpler one: requiring a 
less total number of messages than the FC.

Intuitively, with allowing more communications, the communication-based policy 
obtains more information to make decision and the performance can be improved. However, 
the more communications lead higher communication cost and the cooperation performance 

(1)

max
E1,…,Et ,�

�s0

∞∑

t

n∑

i

ri(st, �t),

s.t.st+1, �t+1 = p(s, �|st, �t), ∀t,

�t ∼ �(⋅|�t,Et), ∀t,

g(Et,�) ≥ 0, ∀t,
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can be damaged with too many redundant or noisy communications as discussed in ATOC 
[11]. This highlights the importance of communication structure learning and we also ana-
lyse the impact of choosing Ei on the cooperation performance in Appendix A.2.

5 � LSC: learning structured communication

Overview LSC learns communication structures and the communication-based policy for 
the (1). It adopts an auxiliary task to learn hierarchical communication structures. Then it 
uses DQN combined with a hierarchical graph neural network to learn the communication-
based policy. This is because Deep Q-Learning has shown great performance in large-scale 
multi-agent reinforcement learning [10, 45].

LSC has two key modules: (1) structured communication module and (2) communi-
cation-based policy module, as shown in Fig.  2. The first module aims to establish the 
dynamic hierarchical communication topology in a distributed fashion. The second module 
contains GNN-based communication extraction and Q-network components. The hierar-
chical structure divides agents into high-level and low-level agents, as indicated by the yel-
low and blue points in Fig. 1e. We here assign the different communication roles to the two 
types of agents: (1) The high-level agents are in charge of forming global perception and 
coordinating low-level agents in their group (2) The low-level agents need to convey the 
local information to high-level agents.

Fig. 2   LSC with Structured Communication Module and Communication-based Policy Module, where s
i
 , 

o
i
 , a

i
 and w

i
 denote state (global perception), observation, action and importance weight of agent i, respec-

tively. The former module uses partial observation to establish the communication structure. The latter 
employs Graph-based communication and Q-Network to extract communication content and produces col-
laboration policies based on established communication structure respectively
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5.1 � Structured communication module

Three principles design the structured communication module: (1) agents in the same 
group are more likely to understand and cooperate inner group; (2) high-level agents are 
more likely to capture the global perception through the exchanged messages; (3) high-
level agents are distributed sparsely to reduce communication costs. We use the local geo-
metrical relationship and the policy performance as our guide to establishing the hierarchi-
cal structure, as shown in Fig.   3.

Specifically, two sub-modules are included: the weight generator and the Cluster-
Based Routing Protocol (CBRP [24]). The weight generator aims to determine the impor-
tance of communication for each agent automatically. It is modeled by a neural network 
fwg ∶ oi → wi , where the weight wi measures an agent’s confidence to become a high-level 
one. Then we aim to establish a hierarchical communication structure based on the agents’ 
weights. CBRP is a widely adopted hierarchical routing algorithm with weights in the ad-
hoc network area. It meets the demand of generating hierarchical structures based on the 

Fig. 3   Procedure for dynamically establishing a hierarchical communication structure. The illustrated sce-
nario is about pursuing a target: all the agents try to get closer to the target. The circles denote agents, while 
the red square is the target. Each agent determines its communication weight based on partial local observa-
tion (e.g., A:1 denotes agent A has communication weight 1). Agent ‘G’ finds the target (red square), which 
has a higher weight of 2 in the weight generation step. Then at the structure establishing step, it is elected as 
a high-level agent. After communication and actions, agents’ positions may change. Each agent needs to re-
generate the communication weight and decide to keep or change their communication roles. For instance, 
‘B’ gets a lower weight with a high weight agent ‘D’ nearby. Then ‘D’ will downgrade its role at the struc-
ture establishing step
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weights and distributed structure establishment. Thus we take CBRP as our backbone to 
establish hierarchical structures.

CBRP iteratively establishes hierarchical routing structures. It takes a hyper-parameter 
cluster radius d as the basis to establish structure, and we denote the agent’s communica-
tion field as the area within the cluster radius. In each round, each low-level agent checks 
whether other agents have larger weights or contain high-level agents within its commu-
nication field. If no such agent is found, it is elected as a high-level agent; otherwise, it is 
kept as a low-level agent. Meanwhile, each high-level agent checks whether other high-
level agents exist in its communication field. If no such agent is found or the founded high-
level agents’ weights are smaller than its weight, it keeps as a high-level agent; otherwise, 
it downgrades to a low-level agent. This procedure makes the structure obtain sparsity 
property: no high-level agent is included in other high-level agents’ communication fields. 
We take a high-level agent and the low-level agents in its communication fields as a group. 
The overall hierarchical communication network is thus established: connecting high-level 
agents across groups and each low-level agent to its high-level agent.

The mode of implementing the weight generator needs to be adequately studied. A natu-
ral way of designing a weight generator is to set identical weights or random weights for all 
the agents. However, topology plays a vital role in the communication of MARL algorithms. 
Different topology structures result in diverse communication results, further influencing 
the communication-based policy’s cooperation performance. The experimental results also 
suggest that the choice of weights has a non-negligible influence on the performance, which 
motivates us to train these two modules end-to-end. However, the CBRP sub-module is not 
differentiable. It prevents us from back-propagating the gradients from the communication-
based policy module to the weight generator sub-module. To make the weight generator 
learnable, we introduce an auxiliary RL task for weight generating: each agent’s action is 
weight choosing, with the same observation and reward of the original task. Hence, we have 
a close-loop task-driven communication weight-generating manner. Specifically the weight 
w is defined in the discrete set {0, 1, 2} . IDQN is chosen to implement the weight generator 
for simplicity. The loss �(�w) for the weight generator sub-module is:

where yi = ri + 𝛾 maxw̃i
Q𝜃w (õi, w̃i) , and ri denotes the reward for agent i.

5.2 � Communication‑based policy module

Once the communication structure is determined, the communication-based policy module 
generates and propagates messages and selects actions. The communication-based policy 
module also consists of two sub-modules: the GNN-based communication sub-module and 
the Q-Net policy sub-module. The former is used to learn the communication messages 
and further update overall state perceptions. The latter learns the policy based on the new 
state perceptions after efficient communication.

As illustrated in Fig.  4, the well-established hierarchical communication network can 
be represented by a directed grpah (V, E) . The node set V contains Nv nodes, which can be 
divided into the high-level node set Vh and the low-level node set Vl . For i ∈ Vh , the node 
feature vector vi includes the embedding feature vn

i
 , the high-level node feature vh

i
 and the 

global feature vg
i
 ; for i ∈ Vl , the node feature vector vi only includes the embedding feature 

(2)�(𝜃w) = �
�,�,�,�̃

[
n∑

i=1

(Q𝜃w (oi,wi) − yi)
2

]
.
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vl
i
 . For each edge (i → j) ∈ E with i, j ∈ V , the edge feature vector is denoted as eij . Func-

tions � and � denote the update embedding function and aggregate function respectively.
As shown in Table 1, the overall GNN-based communication sub-module consists of 

three steps.

Step (1) Intra-group aggregation In each group, the low-level agents embed their local 
information ( vl

i
 ) and send them to the associated high-level agent j ∈ Vh ; the high-level 

agent aggregates the information from its associated low-level agents and obtains the 
cluster perception ( vh

j
);

Step (2) Inter-group sharing The high-level agent communicates with the other high-
level agent with cluster perception ( vh

i
 ). This further aggregates all received other high-

level messages to obtain the global perception ( vg
i
);

Step (3) Intra-group sharing Each high-level agent communicates its features with the 
associated low-level agents while the low-level agents aggregate the received informa-
tion from high-level agents. The embedding feature of both high-level and low-level 
agents are then updated.

Once the GNN-based communication sub-module is done, every agent gets a new state 
perception. The Q-Net sub-module then takes the new state perception as input to learn the 
action policy.

We model the GNN-based communication sub-module as a GNN ( f�gnn ) with parameter 
�gnn , and the Q-Net of agent i as Qi

�Q
 . The gradient can be back-propagated from Q-Net to 

Fig. 4   Intra-inter group communication. The edge embedding is considered the communication message 
between agents. Left: Low-level agents transfer their valuable local embeddings to the associated high-level 
agents. Middle: High-level agents communicate with each other to form a global perception. Right: All 
high-level agents broadcast embedding information to their low-level agents to establish global cooperation

Table 1   The proposed GNN-based communication architecture with three steps

Type Edge (i → j) ∈ E Edge Update Node Update

Step 1: intra-group aggre-
gation

i ∈ Vl , j ∈ Vh eij = �(vl
i
) , ēj = 𝜌(

{
eij
}
(i→j)∈E

) vh
j
= 𝜙(ēj, v

l
j
)

Step 2: inter-group sharing i ∈ Vh , j ∈ Vh eij = �(vh
i
, vl

i
) , ēj = 𝜌(

{
eij
}
(i→j)∈E

) v
g

j
= 𝜙(ēj, v

l
j
)

Step 3: intra-group sharing i ∈ Vh , j ∈ Vl ∪ Vh eij = �(v
g

i
, vh

i
, vl

i
) , ēj = 𝜌(

{
eij
}
(i→j)∈E

) vl
i
= 𝜙(ēi, v

l
i
) , 

vl
j
= 𝜙(ēj, v

l
j
)
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the graph neural network. As a result, the overall loss of the communication-based policy 
module is:

where yi = ri + 𝛾 maxãi
Qi

𝜃Q
(f𝜃gnn (�̃), ãi) , and ri is the reward for agent i. Soft updating 

scheme is used:

We summarize our LSC in Algorithm 1. The CBRP function automatically and distribu-
tively establishes the hierarchical communication network based on the learned importance 
weights. HCOMM denotes the communication-based policy module: processing from 
intra-group aggregation, inter-group sharing, and intra-group sharing to decision mak-
ing from Q-Net in Fig.  2. From the algorithmic perspective, it can be easily taken as the 
process of outputting the Q-values based on GNN-based communication in Table 1 and a 
Q-Network. We detail the algorithmic description of CBRP and HCOMM in the Appendix.

Algorithm 1 LSC: Learning Structured Communication for MARL
1: Initialization: weight generator parameter: θw, Q-net: θQ, GNN: θgnn, target Q-net:

θQ̃, target GNN: θ ˜GNN replay buffer R = ∅, cluster radius d, the number of agents n;
2: for Episode = 1, · · · ,M do
3: Reset t = 0, global state st and observation oti for each agent i, low-level agents set

Vt
l = {all agents} and high-level agents set Vt

h = ∅;
4: for t = 1, · · · , T and st �= terminal do
5: for each agent i do
6: With probability ε pick a random action wt

i else wt
i = argmax{wi} Qθw (oti);

7: end for
8: Get current position POSsti of each agent i;
9: (Vt

l ,Vt
h, E) = CBRP((Vt−1

l ,Vt−1
h ),{wt

1, · · · , wt
n},{POSst1, · · · ,POSstn}, d);

10: {qt1, · · · , qtn} = HCOMM(Vt
l , Vt

h, E);
11: for each agent i do
12: With probability ε pick a random action ati else choose action with the largest

value in qti ;
13: end for
14: Execute global actions and get global reward rt , next state st+1 , next observa-

tion ot+1;
15: Get updated position POSst+1

i for each agent i;
16: Store (st, ot, {POSst1, · · · ,POSstn}, at, rt, ot+1, {POSst+1

1 , · · · ,POSst+1
n }, st+1)

to R;
17: end for
18: for k = 1, · · · ,K do
19: Sample a random mini-batch transitions from R;
20: Update weight generator θw by Eq. (2);
21: Update communication-based policy module (θQ, θgnn) by minimizing Eq. (3);
22: Update the target networks through Eq. (4).
23: end for
24: end for
Refer to Appendix for details of HCOMM and CBRP.

(3)�(𝜃Q, 𝜃gnn) = �
�,�,�,�̃

[
n∑

i=1

(
Qi

𝜃Q
(f𝜃gnn (�), ai) − yi

)2
]
,

(4)𝜃Q̃ = 𝜏𝜃Q + (1 − 𝜏)𝜃Q̃,

𝜃 ̃gnn = 𝜏𝜃gnn + (1 − 𝜏)𝜃 ̃gnn.
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5.3 � Communication efficiency analysis

We discuss communication efficiency5 of our LSC from three aspects: the number of mes-
sages exchanged ( Nmsg ) among agents; the number of communication steps before acts 
( Nstep ); the max communication bandwidth required for an agent ( Nb-r ). Here the band-
width is measured by the number of messages sent/received by the agent in each episode.

Table 2 compares the communication efficiency of different communication structures. 
In fully-connected (FC) structures where each agent communicates with all the others, the 
message exchanging complexity is O(n2) . The max bandwidth for an agent is O(n) . In the 
STAR structure, agents only need to communicate with the central agent, and thus the mes-
sage exchanging complexity decrease to O(n) . Different from FC and STAR, the other three 
topologies’ communication efficiency depends on the actual organization. We denote two 
crucial factors, i.e., the number of groups and the maximum number of agents in a group, as 
k and b, respectively. As agents communicate with each other inner group, the TREE struc-
ture and NBOR structure need O(kb2) message exchanging complexity. The TREE structure 
lets groups communicate sequentially, which needs O(b) communication steps. Our hierar-
chical communication structure only needs low-level agents to communicate with the high-
level agents, and high-level agents need to communicate with each other. Thus the message 
exchanging complexity is O(kb + k2) . It can be easily seen that for k ≪ b , the Hierarchical 
enjoys better communication efficiency than the NBOR and TREE. Moreover, due to b < n , 
the Hierarchical also has a lower Nmsg which satisfies the cost constraint in (1).

Moreover, the Hierarchical and STAR have similar message exchanging complex-
ity when the b ≫ k . We can ignore the k2 (communication cost among high-level agents) 
in Hierarchical. The message exchanging complexity of Hierarchical can be denoted by 
O(kb) then. However, a low-level agent may communicate with multiple high-level agents 
(appear in multiple high-level agents’ communication field),6 O(kb) > O(n) , LSC (Hierar-
chical) needs more total messages than the STAR.

6 � Experiments

We organize our experiments from two aspects: (1) Performance: will the learnable struc-
tured communication improve cooperation; (2) Efficiency: will a hierarchical communica-
tion topology help achieve better communication efficiency.

6.1 � Experimental settings

6.1.1 � The testing environments

The MAgent7 is a widely adopted platform [38, 45] to evaluate multi-agent reinforcement 
learning algorithms with many agents. It provides flexible environment configurations, and 

5  Communication efficiency varies by different communication mechanisms. Here our analysis is under the 
peer-to-peer mode.
6  To clarify, we denote the areas an agent can communicate and observe are communication fields and per-
ception fields.
7  https://​github.​com/​geek-​ai/​MAgent.

https://github.com/geek-ai/MAgent
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we choose it as the platform to evaluate our LSC. As shown in Fig.  5, we adopt battle 
scenario settings: n agents move and fight against n enemies in a 40 × 40 grid world. The 
enemies got 6 × 6 perception field and can attack its 8-adjacent grids. Each enemy’s speed, 
attack power, and health point are 2, 2, and 10. Specifically, two scenarios are adopted: (1) 
large perception battle and (2) small perception battle.

For the large perception battle, the agent got the same 6 perception field as the enemies. 
To force agents to learn to cooperate, we lower each agent’s speed, attack power, and health 
point to 1, 1, and 4. The reward design follows the DGN’s original setting: +5 for success-
fully attacking an enemy, −2 for being killed, and −0.01 for attacking a blank grid.

For the small perception scenario, agents get only a 3 perception range. Due to the dif-
ficulty brought by the small perception range, we keep the speed and health points for the 
agent the same as the enemies. The attack power is set to be 1. With the same action space 
as the original battle setting, we follow the default reward setting of MAgent: −0.005 for 
every move, 0.2 for attacking an enemy, 5 for killing an enemy, −0.1 for attacking an empty 
grid, and −0.1 for being attacked or killed. The details of the agent and enemy properties 
can be seen in Table 3.

6.1.2 � Baselines

As our LSC aims to learn a hierarchical communication structure to gain better perfor-
mance in MARL, we first compare it with different predefined communication topologies. 
These methods are corresponding to relevant MARL methods also.

•	 IDQN [33]. Agents do not communicate. Each agent learns its policy independently. 
By comparing communication methods with IDQN, we can infer the effect of commu-
nication.

•	 STAR (CommNet [30]). CommNet is a policy gradient method with a communication 
center. We extend it to the Q-Learning scheme to make it comparable with other meth-
ods. Each agent receives the message from the center and combines it with local obser-
vation to estimate the Q-values.

•	 FC (DIAL [5]). DIAL is a Q-Learning-based FC method. Each agent aggregates other 
agents’ messages to help estimate the local Q-values.

•	 NBOR. Each agent communicates only with its neighbors.
•	 TREE. Each agent communicates with its neighbors sequentially.

Recall that the aggregators need to be defined for graph neural networks. We adopt summa-
tion, which is a popular aggregator, for all the above methods.

Then we exploit the impact of the weight generator on the LSC learning and design 
LSC-FIX and LSC-RAND as baselines. Finally, we examine the influence of different 
aggregator choices on communication learning. These baselines are summarized below.

Table 2   Theoretical analysis 
for communication efficiency of 
different structures

FC STAR​ TREE NBOR Hierarchical

Nmsg O(n2) O(n) O(kb2) O(kb2) O(k2 + kb)

Nstep O(1) O(1) O(b) O(1) O(1)

Nb-r O(n) O(n) O(b) O(b) O(b + k)
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•	 LSC-FIX. LSC without weight learning. The communication weights of agents are ran-
domly initialized and kept fixed. Comparing LSC with it can show the effectiveness of 
our learnable weight generator.

•	 LSC-RAND. LSC with random communication weight. The communication weights 
of agents are all randomly generated at each step. Comparing LSC with it can show the 
effectiveness of a learnable weight generator.

•	 DGN [10]. Use attention aggregator in NBOR. It is also the current most powerful 
MARL communication method.

•	 TarMAC [4]. Use attention aggregator in FC.
•	 LSC-Att is the LSC with attention aggregator.

6.1.3 � Hyperparameters

To enable reproducibility, we provide our LSC’s hyperparameters used in the two settings 
in Table 4. Most of them are common in communication MARL methods, and we follow 
the hyperparameter chosen in DGN [10]. The learning rate and discount factor are cho-
sen with the best return for every method through a grid search. We grid search learning 
rate with [0.001, 0.0005, 0.0001] and gamma with [0.9, 0.95, 0.98] for every method with 
3 different seeds. Then we test every converged model and select the best return hyper-
parameters for training. Our LSC has a weight generator network which is different from 

Fig. 5   Battle scenario with large 
and small perception. The blue 
squares are the controllable 
agent and the red squares are 
the enemies controlled by the 
environment

large perception

small perception

Agent Enemy 

Table 3   Properties of enemy, 
small perception agent and large 
perception agent

Property/Agents Enemy Small perception 
agent

Large 
perception 
agent

Perception range 6 × 6 3 × 3 6 × 6

Health 10 10 4
Speed 2 2 1
Power 2 1 1
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other methods. For simplicity, we let the weight generator enjoy the same hyper-parameters 
as the Q network. To ease the difficulty of reproducing, we open-sourced our code.8

6.2 � Performance

6.2.1 � Performance comparisons under the large perception setting

Simulation setup: We train the baselines and LSC in the large perception setting for 3000 
episodes with 64 agents against 64 enemies. The performance of all the methods are sum-
marized with five different seeds.

Main results: Fig.  6a shows the learning curves of the baselines and LSC in large-
perception settings. If not specifically mentioned, the solid line and shadow area in all 
the learning curves denote the mean and variance, respectively. As seen, LSC achieves a 
higher converged mean reward than the baselines.

To better evaluate these methods, besides the learning curve, we choose some quantita-
tive evaluation criteria of the battle game, like ‘Mean-reward’ (the average per-step reward 
of all agents), ‘ Nk ’ (average number of kills per episode), ‘ Nd ’ (average number of deaths 
per episode) and ‘ rksd ’ (kill to death ratio Nk∕Nd∕Nstep ) to make further analysis. We test 
the models of different methods with the best performance for 50 rounds with different 
seeds. The results are shown in Table 5. We can observe that LSC achieves a higher mean 
reward and a larger kill-death ratio than the baselines. LSC can wipe out enemies faster 
than others. It can be observed that NBOR, TREE, and IDQN get high variance with differ-
ent seeds and achieve a lower mean reward than others. This may be because both of them 
restrict cooperation and information sharing in the local range. As for the STAR and FC, 
although they enable global communication, the difficulty of extracting useful informa-
tion in many messages leads them to a lower performance than LSC. Moreover, the STAR 

Table 4   Hyperparameters for 
LSC in large and perception 
settings

The a is the large perception setting’s parameter, and the b is the small 
perception setting’s parameter for a/b

Learning rate 1e−4

Discount factor 0.98/0.95
Batch size 1
Activation function Relu
�start 1.0
�end 0.01
Optimizer Adam
Aggregation sum
Conv layers 2
Q network MLP(128,64, 

num_
act=13/21)

Dimension of msg 64
Weight generator MLP(128, 64, 3)

8  https://​github.​com/​Jarvis-​K/​LSC.

https://github.com/Jarvis-K/LSC
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structure performs better than the FC on the kill-death ratio. We infer that the STAR model 
learns an aggressive policy (more likely to attack). At the same time, FC learns a passive 
policy (less likely to attack to avoid too many invalid actions).

Further analysis: We visualize the testing procedure to better understand the strategies 
learned by different methods. During the test stage, LSC agents can cooperate as encircling 
enemies and fire-focusing strategies, as shown in Fig.  7b and c. However, the baselines 
fail to handle the situation when some agents are far away from enemies. For example, in 
Fig. 7a, the agents in the top right can not know where to attack or move without commu-
nication. We run every learned model from this initial state and find only LSC has learned 
to encircle inter-groups and wipe out the enemies (see Fig.  8a). While IDQN tends to 
cooperate within the perceptive field, the agents would get close to the wall to avoid being 
attacked when no enemies are found. Limiting cooperation within the perceptive field leads 
to failed results, as shown in Fig. 8f. STAR, FC, NBOR, and TREE enable communication 
to help share information and achieve better cooperation. As shown in Fig.   6, different 
communication topologies lead to distinct cooperation strategies. In Fig. 8a, LSC agents 
form a global encircling strategy via intra-group and inter-group communication, which 
can efficiently wipe out enemies. In Fig. 8b, e, we can see that some agents in NBOR and 
STAR wondered far away from agents and enemies. NBOR only collects information from 
nearby agents, so useful information from far away agents can not be obtained. For STAR, 
agents can receive the global message summarized from all agents’ messages. However, 
extracting from global messages can be challenging. This may further make the agents far 

(a) Structure comparison with large per-
ception

(b) Structure comparison with small per-
ception

Fig. 6   Learning curves of LSC and the baselines with sum aggregator in different perception settings

Table 5   Performance 
comparisons of 64 vs. 64 large 
perception setting in 50 testing 
trials on Battle game

The row and columns are methods and criteria, respectively. The bold 
denotes the best result in each column, and the ± shows the variance

M/C r Nk Nd Nstep rksd

LSC �.�� ± �.� �� ± � �� ± � �� ± � �.� ± �.�%

NBOR 0.78 ± 0.05 63 ± 1 32 ± 3 124 ± 14 0.81 ± 0.29%

TREE 0.62 ± 0.22 62 ± 2 36.6 ± 8 223 ± 144 1.3 ± 0.80%

STAR​ 0.9 ± 0.07 63 ± 1 35 ± 5 74 ± 5 2.5 ± 0.5%

FC 0.83 ± 0.22 63 ± 1 35 ± 3 156 ± 43 1.3 ± 0.45%

IDQN 0.82 ± 0.12 63 ± 1 38 ± 2 142 ± 21 1.19 ± 0.21%
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away from the majority hard to understand the global message. In Fig. 8c and d, the agents 
did not run away from the majority. Thus the above problem gets avoided. They either 
gathered agents together or split agents into multiple small groups. However, these meth-
ods are hard to wipe out agent effectively as LSC do without the hierarchical communica-
tion structure.

Discussion: It can be inferred that the key to effective communication is establishing 
global communication and enlarging the cooperation range in the large perceptive field set-
ting. Thus LSC, STAR, and FC are much more powerful. Moreover, in large-scale MARL, 
many messages may exist; thus, structured communication can further help LSC achieve 
better performance than others.

6.2.2 � Performance comparisons under the small perception setting

Simulation setup: When the agents observe less, cooperation would be harder to emerge. 
Moreover, understanding the massive communication messages would be much more chal-
lenging with a smaller visual perception range. Thus we adopt the small perception setting 
to do further analysis. We train LSC and the baselines for 3000 rounds with five different 
seeds.

Main results: Fig. 6b shows the learning curves of the baselines and LSC in the small 
perception setting. There are two notable phenomena here: On the one hand, LSC per-
forms better in terms of the converged mean reward; On the other hand, unlike in the large 
perception setting, NBOR and TREE converged to a higher mean reward than the other 
baselines. The key to effective communication in the small perception setting is promoting 
local cooperation at an early stage. Global communication may help improve cooperation 
further.

We further test the learned models for 50 rounds, and the results are shown in Table 6. 
Although agents can hard to wipe out the enemies in this setting, one can observe that LSC 
achieves a higher mean reward and a larger kill-death ratio than all baselines. It should be 
noted that the kill-death ratio is Nk∕(Nd ∗ Nstep) . Agents who kill less but terminate quickly 
can have a large kill-death ratio. FC and STAR gain a lower mean reward than others, even 
lower than IDQN. This is because the two structures need to extract valuable information 
from all of the messages. The small perception setting makes it harder to achieve. Thus the 
messages can not help agents cooperate but impede the learning process. The NBOR and 
TREE achieve much higher mean rewards than other baselines. Because it restricts agents 

(a) Initial state (b) Encircle (c) Fire focusing

Fig. 7   Behavior illustration of LSC in the large perception setting
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from communicating with nearby agents, the message extraction difficulty gets eased. 
However, from the perspective of the kill-death ratio, IDQN achieves a higher kill-death 
ratio than the other three baselines. This is because IDQN’s policy is aggressive compared 
with others, leading to being wiped out at a few steps.

(a) LSC (b) NBOR (c) TREE

(d) FC (e) STAR (f) IDQN

Fig. 8   Behavior illustration in the large perception setting. In the first and second rows, we show the early 
state and near-to-final battle state by LSC and the baselines in the top and bottom plots
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Discussion: It can be further inferred that restricting communication range is vital in the 
small perceptive field setting. Thus LSC, NBOR, and TREE are more suitable.

6.2.3 � The relation between topology and receptive field

This subsection discusses the relation between topology and receptive field from average 
reward performance.

For large receptive field results in Fig. 6a, LSC achieves the highest black curve of aver-
age reward scores, and the orange and gray curves of STAR and IDQN are higher than 
the red and purple curves of NBOR, TREE, and FC. When agents have a large receptive 
field, agents can form local cooperation directly through their observations, even without 
communication. So IDQN achieves competitive performance with NBOR, TREE, and FC. 
Communication benefits global cooperation; Thus, LSC and STAR can achieve better per-
formance than others.

For small receptive field results in Fig. 6b, we observe some converse results that the 
gray, orange, and red curves of IDQN, STAR, and FC are below the green and purple 
curves of NBOR and TREE. This indicates that communicating with all other agents under 
the small receptive field setting is not competitive with only communicating with neigh-
bors. Our LSC lets high-level agents communicate with each other and reduce the difficulty 
of global information extraction. This makes our LSC achieve better performance than the 
NBOR and TREE.

In summary, our LSC integrates local and global communication by limiting high-level 
agents to communicate with nearby low-level agents to better local cooperation while ena-
bling all high-level agents to communicate with each other. This makes it gain better per-
formance under different receptive fields.

6.2.4 � Ablation study for the weight generation module

To better understand the weight generation module’s influence on the communication pol-
icy, we compare LSC with LSC-FIX and LSC-RAND. LSC will form different topolo-
gies with different weight settings, which further influences the cooperation performance. 
The topology of LSC-FIX is fixed while LSC-RAND is randomly generated at every step. 
In Fig. 9a, LSC converges to higher performance than LSC-FIX and LSC-RAND. Thus, 
the learnable weight generator makes LSC form a valuable communication topology, 

Table 6   Performance 
comparisons of 64 vs. 64 small 
perception setting in 50 testing 
trials

The bold denotes the best result in each column, and the ± shows the 
variance

M/C r Nk Nd Nstep rksd

LSC �.�� ± �.�� �� ± � 64 �� ± � �.�� ± �.��%

NBOR 0.07 ± 0.02 25 ± 2 64 68 ± 12 0.60 ± 0.15%

TREE 0.08 ± 0.01 20 ± 2 64 81 ± 13 0.39 ± 0.10%

STAR​ 0.03 ± 0.01 23 ± 3 64 260 ± 140 0.32 ± 0.07%

FC 0.05 ± 0.02 16 ± 2 64 130 ± 102 0.33 ± 0.15%

IDQN 0.04 ± 0.02 19 ± 2 64 59 ± 10 0.52 ± 0.14%

LSC-FIX 0.09 ± 0.01 25 ± 2 64 51 ± 2 0.77 ± 0.09%

LSC-RAND 0.06 ± 0.02 23 ± 2 64 166 ± 25 0.23 ± 0.02%
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positively impacting the learning process and improving performance. Similar results can 
also be observed by comparing the second and last row in Table 6.

6.2.5 � Performance comparisons with attention aggregator

Besides the topology, the aggregating method is also vital. We adopt the sum aggrega-
tor in all the baselines and LSC in previous comparisons. Can a better aggregation opera-
tor bring better cooperation? We use two attention baselines (DGN and TarMAC) to test 
it, which use attention as the aggregate operator. From the topology perspective, DGN 
belongs to NBOR, while TarMAC is FC. We also provide an attention variant of LSC, 
LSC-Att. Because the STAR and FC share a similar result, we ignore the STAR with atten-
tion here. We train them under the small perception setting. Fig.  9b shows their learning 
curves. It can be observed that LSC-Att achieves the highest converged mean reward. The 
“LSC-Att > DGN > TarMAC" is similar to the topology comparison without attention. We 
evaluate them as before, and Table 7 shows the testing results of the attention baselines. 
Compared with Table 4, it can be observed that the attention aggregator helps a lot in LSC 
and NBOR. However, as for FC, the attention aggregator can hard make improvements due 
to the difficulty of message extraction, as previously mentioned. To sum up, the attention 
aggregator can help the algorithm with appropriate topology achieves better performance. 
In contrast, it can barely help with reasonless topology (Fig. 10).

6.3 � Communication network analysis

6.3.1 � Communication efficiency

As discussed in Sect.  5.3, communication efficiency will be influenced by the communica-
tion topology. Although FC and STAR’s communication efficiency can be directly inferred 
from the number of agents, for NBOR, TREE, and LSC, the communication efficiency 
depends on all the agents’ relative positions and the communication range. Thus some 

(a) Weight generator comparison (b) Structure comparison with attention
aggregator

Fig. 9   Weight generator and attention aggregator studies in small perception setting
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empirical results are needed. We choose two critical measurements here: the max load9 and 
total messages. For a graph G(V, E) , max_load = maxi

∑
j �(eij) and the � is the indicator 

function which return 1 for eij ∈ E else 0. We adopt the small perception setting and test 
the learned models in 50 rounds. The Fig. 11a shows the max load of different topologies. 
It can be observed that TREE, LSC, and LSC-FIX need a smaller max load compared with 
STAR, FC, and NBOR. Fig.  11b shows the total messages of different methods. There is 
no restriction on being a cluster center in FC, TREE, and NBOR. Thus they need more 
total messages. STAR is the lowest because agents only communicate to the center. LSC 
and LSC-FIX’s hierarchical structure needs a little more total messages than the STAR 
but much less than the others. Thus the topology choice is critical for communication 
efficiency.

Besides, we analyze the communication efficiency between LSC and STAR. We count 
LSC’s total message under the different groups (k) when the n is 16. As shown in Fig. 12, 
LSC needs the same total messages as STAR when k = 1 . Moreover, when the k increases 
(LSC forms more groups), the number of total messages will become larger.

To better understand the role of CBRP in LSC, we do the weight and high-level agents 
visualization in Fig. 10. Figure 10a visualizes the agent weights of an intermediate stage 
during the testing procedure for a 64 × 64 battle. Red agents denote the enemies. As 

(a) Before CBRP (b) After CBRP

Fig. 10   Weight visualization of dynamic communication structure: ‘Before CBRP’ and ‘After CBRP’ 
stages. Blue, green and grey nodes denote agents with weight 2, 1 and 0 (enemies in red)

Table 7   Attention model 
comparisons in small perception 
setting

The bold denotes the best result in each column, and the ± shows the 
variance

M/C r Nk Nd Nstep rksd

LSC-Att �.�� ± �.�� �� ± � 63 ± 1 �� ± � �.�� ± �.��%

DGN 0.11 ± 0.02 23 ± 2 63 ± 1 48 ± 5 0.77 ± 0.15%

TarMAC 0.06 ± 0.02 24 ± 2 63 ± 1 102 ± 33 0.45 ± 0.3%

9  For practical scenarios, a device can only connect to a finite number of other devices.
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discussed in Sect. 5.1, only three kinds of discrete weights can be obtained for each agent, 
i.e., {0, 1, 2} . The blue agents denote the agents have a weight 2, and the green ones denote 
the agents have a weight 1, while there is no agent with a weight 0 in this stage. Without 
the CBRP sub-module, all the blue agents with a weight of 2 will be elected as high-level 
agents. This leads to an almost dense high-level agent structure, for instance, the red cir-
cle area. 10(b) visualize the agent weights after implementing CBRP method. Only three 
agents are set to be high-level agents (weight 2), while all others are set to be low-level 
agents (weight 0).

6.3.2 � Dynamics of communication

LSC can form and change communication topology in the procedure of the task. There 
are three reasons to make the topology vary: (1) the cluster center disappears; (2) agents 
move out of all the clusters; (3) one cluster center gets in other clusters. We denote the 
former two reasons as “get_out" and the last one as “get_in." The “get_out" needs to elect 
a new center to ensure the agents can communicate to others (connectivity constraint). In 
contrast, the “get_in" needs to downgrade the centers to ensure the sparsity (in CBRP, no 
high-level agent is included in other high-level agents’ communication fields). By running 
our LSC for 100 testing rounds, we statistic the number of topology changes per step for 
the battle scenarios in Table 8, and most of the changes are caused by the “get_out." This 
indicates that the connectivity constraint is the main reason for the topology change.

7 � Conclusion and Discussion

A novel learning structured communication (LSC) algorithm is proposed for multi-agent 
reinforcement learning. The hierarchical structure is self-learned with a clustering-based 
routing protocol. The communication message representation is then naturally embedded 
and extracted via a graph neural network. Experiments in two different settings demon-
strate that topology is essential in cooperative learning and communication efficiency. Our 
LSC can outperform existing learning-to-communicate algorithms with better communica-
tion efficiency and cooperation capability in large-scale settings.

(a) Max Load Comparison (b) Total Messages Comparison

Fig. 11   Communication Efficiency Comparison for different structures
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To our knowledge, LSC is the first work on hierarchical communication learning in 
MARL. The hierarchical topology enables agents to better aggregate messages inter-group 
and intra-group. Similar ideas also appear in graph pooling and region-based aggregating 
computation. However, many questions remain unsolved. Communication often has con-
straints for many real-world tasks, such as bandwidth and load. The current LSC frame-
work is designed without these constraints. How to make the LSC or hierarchical commu-
nication network compatible with practical constraints remains an open question. Besides, 
our work does not consider the unreliability of communication (e.g., latency and error on 
messages). This can be important to gain a robust communication policy and make it more 
practical in real work applications.

Appendix

CBRP Function and HCOMM function

We provide the CBRP and HCOMM function used in the LSC in Algorithm 2 and 3.

Table 8   Statistics of LSC’s communication topology changes

The “get_in" and “get_out" are the two reasons that make topology change. The Mean and Variance denote 
the mean and variance of changes at a step

Reasons/Statistics Mean Variance

get_in 1.71 17.45%
get_out 0.01 0.03%

Fig. 12   The boxplot of LSC’s 
total message number regard-
ing different number of groups 
k when the number of agents n 
is 16. As the number of groups 
increase, the number of messages 
get larger
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Algorithm 2 CBRP: Cluster Based Routing Protocol
1: Input:(Vt

l ,Vt
h),{wt

1, · · · , wt
n}, {POSst1, · · · ,POSstn}, d

2: Define neighbours are distance < d, Te is a constant to control the max-waiting time,
Vu = ∅ is the undecided nodes set and E = ∅;

3: Each node i broadcast its weight wt
i to neighbours;

4: � Maintain the structure
5: for i is in high-level nodes set Vt

h do
6: if there is a high-level nodes in neighbours and its weight is bigger than agent i then
7: Pop node i from Vt

h and append it to Vt
l ;

8: end if
9: end for
10: for i is in low-level nodes set Vt

l and no high-level node is in its neighbour do
11: Pop node i from Vt

l and append it to Vu;
12: end for
13: � Elect high-level nodes
14: for i is in Vu concurrently do
15: if does not receive larger weight for Te then
16: append i to Vt

h and broadcast to neighbours;
17: else
18: Wait for the signal from high-level node for 2Te;
19: end if
20: if received a signal from high-level node then
21: append i to Vt

l ;
22: else
23: append i to Vt

h;
24: end if
25: end for
26: � Generate communication link
27: for i in Vt

h do
28: for j in Vt

i and j is neighbouring i do
29: append eij = 0 and eji = 0 to E;
30: end for
31: for j in Vt

h do
32: append eij = 0 to E;
33: end for
34: end for
35: Return (Vt

l ,Vt
h, E)
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Algorithm 3 HCOMM: Hierarchical Communication-based Policy Module
1: Input: Vl,Vh, E;
2: � Intra-group aggregation
3: for vi in Vl do
4: for vj in Vh and (i → j) in E do
5: eij = φenc(vi); � Generate normal to central messages
6: end for
7: end for
8: for vj in Vh do
9: ēj = ρ({eij}(i→j)∈E ); � Central agents aggregate received messages

10: vhj = φ(ēj , vlj); � Generate cluster perception
11: end for
12: � Inter-group sharing
13: for vj in Vh do
14: for vi in Vh and (i → j) in E do
15: eij = φ(vhi , v

l
i); � Generate central to central messages

16: end for
17: end for
18: for vj in Vh do
19: ēj = ρ({eij}(i→j)∈E ); � Aggregate received central to central messages

20: vgj = φ(ēj , vlj); � Obtain global perception
21: end for
22: � Intro-group sharing
23: for vi in Vh do
24: for vj in Vl and (i → j) in E do
25: eij = φ(vgi , v

h
i , v

l
i, eji), ēj = ρ({eij}(i→j)∈E ); � Generate central to normal

messages
26: end for
27: end for
28: for vj in Vl ∪ Vh do
29: for vi in Vh and (i → j) in E do
30: ēj = ρ({eij}(i→j)∈E ); � Aggregate received central to normal messages
31: end for
32: vnj = φ(ēj , vlj); � Update states
33: qj = Q(vlj);
34: end for
35: return q

Communication structure effects On Q‑learning

The performance of a multi-agent learning algorithm is often measured by the sum of utili-
ties obtained by all the agents: Q(�, a) =

∑N

i
Qi(�, �) where the Qi is the local utility func-

tion of agent i. The �, � are the joint observation and joint action, respectively. It is hard to 
analyze the performance of multi-agent learning in partial observable settings. Thus we 
consider a simple case: all the agents can observe the state information, which means joint 
observation can be obtained. In contrast, joint action can only be accessed through commu-
nication. Communication-based MARL uses local and communicated actions to approxi-
mate the joint action:
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where the Ci is the communication agents set of agent i. Denote −i as 
{1,… , i − 1}

⋃
{i + 1,… ,N} . The FC and STAR communication methods take 

Ci = N(i) = −i while NBOR and TREE have Ci = N(i) ⊂ −i where the N(i) is the neigh-
bour agents set of agent i. For Hierarchical topology, the Ci = N(i)

⋃
NH(i) ⊂ −i where 

the NH(i) is the communication reachable agents set of agent i through intra-group com-
munication. For example, in Fig. 4 of our manuscript, the agent E can communicate to A 
through intra-group communication, then {A} ⊂ NH(E) . On the one hand, taking Ci = −i 
often faces the dimensionality issue (i.e., as the number of agents increases, the complex-
ity of learning the utility function exponentially increases [48]). On the other hand, inap-
propriate design of Ci leads to a loss of cooperation. To quantify how much utility an agent 
will potentially lose, we define the potential loss in lacking communication. Before that, we 
first define the potential expected utility as follows:

Definition 1  The potential expected utility of agent i is the maximum expected utility of 
agent i when perfect coordinating with its neighbors by communication:

where Qi(�, ai, aCi
) =

∑
�

∑
a−i�Ci

P(�)P(a−i�Ci
��, ai, aCi

)Q(�, �).

The P(a−i�Ci
|�, ai, aCi

) and P(�) can be estimated based on the experienced data. The 
max operation is taken on the aCi

 . Therefore, this measure generally overestimates the 
expected utility that an agent can get if it communicates and coordinates with Ci.

Proposition 1  If D ⊂ C ⊂ −i , then PVi(�, ai,Di) ≤ PVi(�, ai,Ci)

Thus the Ci = −i gains the maximum potential expected utility. Then the potential util-
ity loss if an agent only communicates with some agents when selecting its action.

Definition 2  The potential loss in lacking communication of agent i is the difference of 
the potential the expected utility of agent i when it coordinates with all agents and with 
neighbors Ci:

Similar definitions also appear in [48]. With Proposition 1, it can be inferred that for 
Di ⊂ Ci , PLi(�,Di) ≤ PLi(�,Ci) ≤ PLi(�,−i) . Then if NBOR (or TREE) and the hierarchy 
structure have the same set of neighbor agents N(i), N(i) ⊂ N(i)

⋃
NH(i) . The hierarchical 

structure has a potential loss less than or equal to NBOR (or TREE). Thus, the hierarchical 
structure is a trade-off between cooperation loss (NBOR and TREE) and curse of dimen-
sion (FC and STAR).

Furthermore, PL also suggests the importance of choosing a suitable Ci . If PLi(�,Ci) is 
large, relaxing the communication set from −i to Ci has a large potential loss. This lowers 
the upper bound of Eq.  5 and makes the algorithm obtain a lower expected global util-
ity. If PLi(�, a) = 0 , we can replace Qi(�, ai, a−i) with Qi(�, ai, aCi

) without loss of potential 

(5)Q(�, �) ≈

N∑

i

Qi(�, ai, aCi
) ≤

N∑

i

max
âCi

Qi(�, ai, âCi
),

(6)PVi(o, ai,Ci) = max
aCi

Qi(�, ai, aCi
),

(7)PLi(�,Ci) = max
ai

PVi(�, ai,−i) −max
ai

PVi(�, ai,Ci)
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expected utility. The complexity of learning can be reduced with a smaller size of Ci . Thus, 
learning Ci (communication structure learning) is critical for Q-Learning. It learns the 
communication structure to obtain a higher global utility under current policy. This helps 
both the communication structure and policy learning.
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