
Interactive Medical Image Segmentation with
Self-Adaptive Confidence Calibration

Wenhao Li∗, Chuyun Shen∗, Qisen Xu∗

School of Computer Science and Technology
East China Normal University

Shanghai, China 200062
{whli,cyshen,qsxu}@stu.ecnu.edu.cn

Bin Hu
Huashan Hospital
Fudan University

Shanghai, China 200062
08301010188@fudan.edu.cn

Bo Jin†

School of Computer Science and Technology
East China Normal University

Shanghai, China 200062
bjin@cs.ecnu.edu.cn

Haibin Cai
Software Engineering Institute
East China Normal University

Shanghai, China 200062
hbcai@sei.ecnu.edu.cn

Fengping Zhu, Yuxin Li
Huashan Hospital
Fudan University

Shanghai, China 200062
{zhufengping,liyuxin}@fudan.edu.cn

Xiangfeng Wang†
School of Computer Science and Technology

East China Normal University
Shanghai, China 200062

xfwang@cs.ecnu.edu.cn

Abstract

Interactive medical segmentation based on human-in-the-loop is a novel paradigm
that draws on human expert knowledge to assist medical image segmentation. How-
ever, existing methods often fall into what we call the interactive misunderstanding,
the essence of which is the dilemma in trade-off short- and long-term interaction
information. To better utilize the interactive information at various timescales, we
propose an interactive segmentation framework, called interactive MEdical seg-
mentation with self-adaptive Confidence CAlibration (MECCA), which combines
the action-based confidence learning and multi-agent reinforcement learning. A
novel confidence network is learned by predicting the alignment level of the action
with the short-term interactive information. A confidence-based reward shaping
mechanism is then proposed to explicitly incorporate the confidence into the policy
gradient calculation, thus directly correcting the model’s interactive misunderstand-
ing. Furthermore, MECCA also enables user-friendly interactions by reducing the
interaction intensity and difficulty via label generation and interaction guidance,
respectively. Numerical experiments on different segmentation tasks show that
MECCA can significantly improve short- and long-term interactive information
utilization efficiency with remarkably fewer labeled samples. The demo video is
available at https://bit.ly/mecca-demo-video.

1 Introduction

The thorny data-hungry issue posed by machine learning has spawned a boom in human-in-the-loop
(HITL) that incorporates human domain knowledge into the data annotation, model training, or
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Figure 1: The interactive segmentation process. Interactive module: the expert observes current (or
initial) segmentation and provides further correction information (red hints); Utilization module: new
segmentation is refined based on the correction information.

system design process in computer vision [1–3]. Meanwhile, deep learning-based segmentation
algorithms have significantly boosted automatic medical image segmentation performance. However,
the accuracy of existing algorithms usually fails to meet clinical demands due to the pathological
variability, dark lesion areas, and the uneven quality of the training data [4–6]. To further refine the
relatively inaccurate segmentation results, HITL-based interactive image segmentation algorithms
that take advantage of interactive correction information (e.g., clicks, scribbles, or bounding boxes)
increasingly popular [4–11]. The general interactive segmentation process containing an interactive
module and a utilization module is depicted in Figure 1.

(a) Correction information is ignored (b) Refined result becomes worse

Figure 2: Segmentation refining failure after long-term interactions on BraTS2015: a) The segmenta-
tion model can not fully understand or ignore the hint information. b) The interactive segmentation
model could misuse the expert’s interaction correction, which results in a worse result;

Intuitively, the performance of an interactive segmentation algorithm mainly depends on the quality of
its understanding of human-infused sequence knowledge. Unfortunately, existing methods often fall
into what we call the interactive misunderstanding, the essence of which is the dilemma of algorithms
in understanding short-term and long-term interaction information. Paying too much attention to
short-term information can easily cause shocks in the segmentation effect [6, 11]; otherwise, short-
term information may be ignored or misused. We implement the popular interactive segmentation
algorithm, InterCNN [10], which focuses more on long-term information, and evaluate it on the
BraTS2015 benchamark [12]. As can be seen from Figure 2(a), the algorithm ignores the expert’s
correction information and can even be adversely affected, as shown in Figure 2(b).

In this paper, we propose a novel interactive segmentation algorithm for 3D medical images called
interactive MEdical segmentation with self-adaptive Confidence CAlibration (MECCA, see Figure 1)
to alleviate the interactive misunderstanding problem. We follow the multi-agent reinforcement
learning (MARL) framework of [6, 11] to model each voxel ‡ as an agent and formulate the iterative
interactions process as a partially observed stochastic game. Each voxel learns an optimal policy
to adjust its likelihood based on expert interaction information and adjacent voxel information
through a trial-and-error process that continuous interaction with the external environment (i.e.,
the fixed offline training dataset). To enable the MARL framework, which is better able to handle
long-term information, to achieve a balance between short-term and long-term information, we
introduce a novel action-based confidence network to predict the alignment level of the action with
the short-term interactive information. Based on this confidence network, we further propose a

‡The smallest processable unit in three-dimensional medical image space.

2



Segmentation Probability Map

Input Image

Hint Map

STATE

Confidence 

network

Segmentati

on Network

Action 

evaluation

Confidence map

Provide guided interaction regions for 

users/experts if not the first round
Interaction Guide 

Mechanism

Action Map New Segmentation 

Probability Map

Self-Adaptive 

Reward

Real label 

Feedback 
Simulated 

label

generation 

mechanism

Use real label

Use simulated label

Loss

Initial Image

Users/Experts

Advice

O
r

satisfy

ACTION
REWARD

Update probability map if not the first round, 

initialize with fixed values otherwise

Figure 3: MECCA’s architecture. The segmentation module outputs actions to change the segmenta-
tion probability of each voxel(agent) at each interaction step. Meanwhile, the confidence network
will estimate the confidence of actions, which will generate the self-adaptive reward and simulated
label. The confidence map can provide advice regions for the next interaction step with experts.

self-adaptive reward function to explicitly incorporate the alignment level into the policy gradient
calculation, thus directly correcting the model’s interactive misunderstanding. Numerical experiments
on different segmentation tasks show that MECCA can significantly improve efficiency in short-term
and long-term interactive information utilization.

Interestingly, the proposed action-based confidence network enables user-friendly interactions in
addition to alleviating the interactive misunderstanding problem. On the one hand, the confidence
network can generate high-quality labels for unlabeled data, thus reducing the interaction intensity; on
the other hand, one can generate advice interactive regions (i.e., low-confidence segmentation regions)
based on the confidence network to reduce the interaction difficulty. Additional numerical experiments
in the semi-supervised setting show that MACCA is able to approximate the segmentation accuracy
of SOTA methods using significantly fewer labeled samples.

2 Related Works

Interactive image segmentation. Before the significant development of the deep learning-type
segmentation method, many traditional interactive image segmentation methods have been pro-
posed [13]. The classical random Walk [14] can create a weight map with pixels as vertices and
segment the image based on user interactions. GrabCut [15] and GraphCut [16] could associate image
segmentation with the maximum flow and minimum cut algorithms on graphs, respectively, while
Geos [17] was proposed to measure the similarity between pixels’ geodesic distance. In recent years,
deep learning-based interactive image segmentation methods are popularly discussed. [8] segments
images based on CNN interactively. DeepCut [7] and ScribbleSup [9] employed weakly supervised
expert hints to establish interactive image segmentation methods. DeepIGeoS [5] employed geodesic
distance metric to construct a hint map. Polygon-RNN [18] and Polygon-RNN+ [19] fundamentally
segmented each target as a polygon and iteratively chose the polygon vertexes. SeedNet [20] trained
an expert interaction generation RL model. IteR-MRL [6] and BS-IRIS [11] both modeled the
dynamic interaction process as an MDP and employed MARL models to segment images. In addition,
IFSL [21] and IOG [22] aim to reduce the annotation cost of interactive image segmentation. These
interactive methods often fall into the interactive misunderstanding due to the difficulty of effectively
utilizing experts’ short-term and long-term interaction information simultaneously.

Uncertainty estimation for image segmentation Uncertainty estimates are helpful in the context
of deployed machine learning systems as they are capable of detecting when a neural network is
likely to make an incorrect prediction. Traditionally, many algorithms are inspired by Bayesian
statistics [23, 24], such as Monte-Carlo dropout [25], multiplicative normalizing flows [26], and
stochastic batch normalization [27]. The main disadvantage of these BNN approximations is that they
require massive sampling to generate the output distributions. An alternative to BNNs is ensembling
methods [28–32], which propose a frequentist approach to the problem of uncertainty estimation by
training many models and observing the variance in their predictions. However, this technique is
still quite resourcing intensive, requiring inference from multiple models to produce the uncertainty
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estimate. A promising alternative to the sampling-based approach is to let a neural network learn its
uncertainty.[33–40]. These methods commonly consist of a segmentation and confidence network
and are more computationally efficient than other techniques. Different from the previous work
on learning uncertainty through imitation, joint training, or adversarial learning, MECCA adopts a
simple but powerful mechanism by introducing an auxiliary task [35, 37] to predict the alignment
level of the action with the short-term supervised interactive information.

3 MARL-based Interactive Segmentation Framework

This paper employs the MARL framework similar with [6, 11, 41] to formulate the interactive
segmentation process and continuously give error-corrective actions at each interaction step. Let
x = (x1, · · · , xN ) denotes the input image and xi denotes the i-th voxel. In the setting of MARL,
every voxel xi is treated as an agent with its own refinement policy πi(ai

(t), si
(t)). At time step t,

agent xi gets action ai
(t) from the segmentation network according to its current state si

(t). After
taking the action, the agent will receive a reward ri

(t) according to the segmentation result.

The state si
(t) for agent xi is concatenated by its voxel value bi, its current segmentation probability

pi
(t) and the value hi

(t) on the hint map. In particular, the segmentation probabilities of all agents
are initialized to 0.5 and range from 0 to 1. The hint map h(t) is transformed from the user’s hints
which are in the form of edge points. At each step, users click on some edges, which are not correctly
predicted, as hints. The action ai

(t) for agent xi is sampled from its policy and used to adjust its
previous segmentation probability:

a
(t)
i ∼ πθ(a

(t)
i |s

(t)
i ),

p
(t+1)
i = clip(p

(t)
i + a

(t)
i , 0, 1),

(1)

where ai
(t) ∈ A and the clip operation modifies the probability to the interval [0,1]. The action set

A contains actions of different scales, allowing the agent to select the proper action. In our setting,
the A = {±0.1,±0.2,±0.4}. The reward ri

(t) is the feedback (positive or negative) of the action
and is used to update the refinement policy. The reward design is a significant part of our algorithm,
and we will introduce it in detail in Section 4.2.

We adopt the independent learning algorithm framework to solve this MARL problem and use the
popular actor-critic algorithm, A3C [42] to optimize each agent’s refinement policy. The segmentation
network S, which adopts the P-Net[5] as the backbone, is used to parameterize the actor and critic an
S contains two output heads, i.e., policy head and value head. Two heads share the first three 3D
convolutional blocks to extract low-level features. Each of the blocks has two convolution layers and
the size of the convolution kernel is fixed as 3×3 in all these convolution layers. All the convolution
kernels are dilated convolution, which can reduce the loss of resolution. Both of the heads have
another two 3D convolutional blocks to extract specific high-level features. The policy head output
the policy πi(ai

(t), si
(t)), which is the probability distribution of action under current state. Moreover,

the value head estimates the value of the current state, which evaluates how good the current state is
and estimates the expected return. The goal of the policy head is to maximize the expected return by
selecting proper actions in state s(t).

4 Self-Adaptive Confidence Calibration

As we mentioned in the Introduction, there will be some situations where the segmentation model
misunderstands or ignores the hint information. This challenge is what we call the interactive
misunderstanding phenomenon, and the formal definition is shown in the following.

Definition 1 (Interactive Misunderstanding). For a binary classification problem, the sign of the
foreground label y = 1 is denoted as positive, and the sign of the background label y = 0 is denoted
as negative accordingly. In an interactive medical image segmentation task (i.e. a voxel-wise binary
classification problem), for any voxel i, if the sign of the change of segmentation probability output
by algorithm for two consecutive interaction steps sign(△(p(i))) is not equal to sign(yi), then this
phenomenon is defined as interactive misunderstanding.
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To better utilize the interactive information at various timescales and alleviate the interactive misunder-
standing, we propose an interactive segmentation framework called interactive medical segmentation
with self-adaptive confidence calibration (MECCA, Algorithm 1), which combines the action-based
confidence learning and multi-agent reinforcement learning. A novel action-based confidence
network is learned by predicting the alignment level of the action with the short-term interactive
information. A confidence-based reward shaping mechanism is then proposed to explicitly incorpo-
rate the confidence into the policy gradient calculation, thus directly correcting the model’s interactive
misunderstanding. Furthermore, MECCA also enables user-friendly interactions by reducing the
interaction intensity and difficulty via label generation and interaction guidance respectively. The
four key modules mentioned above will be described separately below.

Algorithm 1 Interactive Medical Image Segmentation with Self-Adaptive Confidence Calibration
1: Initialize the segmentation network S with θ and the confidence network C with w;
2: for every sample in labeled datasets do
3: Set the segmentation probability of each voxel to 0.5, s(0) ← (x, p(0), h(0));
4: for every interaction time step t do
5: Take action a(t) ← S(s(t)), get reward r(t) and observe the next state s(t+1);
6: Compute the gradient of S and C;
7: Get a sample (x′, y′) from unlabeled dataset and initialize the state: s′(0) ← (x′, p′(0), h′(0));
8: for every interaction time step t do
9: Take action a′(t) ← S(s′(t)) and generate the simulated label ŷ(t) by (6);

10: Observe the reward and next state s′(t+1) and compute the gradient of S.

4.1 Action-based Confidence Network

Our proposed confidence network learns the confidence of given actions to enable the MARL frame-
work to balance short-term and long-term information and alleviate interactive misunderstanding.
The confidence network uses the previous state and action as input and a confidence map as output
and is optimized by minimizing the summation of binary cross-entropy loss over actions at each
time step t. Here we use C to denote the confidence network, wC denotes the parameters of the
confidence network, while LBCE denotes the binary cross-entropy loss:

LC(s(t), a(t);wC) = LBCE(C(s(t), a(t)), g(t)) + LBCE(C(s(t),−a(t)), 1− g(t)), (2)
where

g(t) =

{
0 if a(t) ⊕ y(t) == 1,
1 otherwise ,

(3)

and g(t) means whether the direction of action is consistent with the label. a ⊕ b is defined as the
statement being only true if either a > 0 or b > 0, but not both. One potential issue when training the
confidence network is the imbalance of samples. Inspired by the discriminator learning in generative
adversarial networks [43], we introduce symmetric samples into the Equation (2) to speed up training.

4.2 Confidence-based Reward Shaping

The previously described action-confidence learning provides the segmentation model with a con-
fidence map to alleviate the interactive misunderstanding phenomenon. By this confidence map,
hard-or-easy samples can be better recognized as the confidence values for these ’hard regions’ are
relatively lower than in other regions. We formulate this voxel-level action-aware as the self-adaptive
reward function, r(t), which is shown in (4), to adapt this mechanism to the training of MARL:

r(t) =
∑N

i=1α (2− ci)
β
gain

(t)
i , (4)

where ci is the value on the confidence map. The setting of hyperparameters α and β are described in
Section 5.1. In addition, gain(t)

i denotes the relative gain of cross-entropy:

gain
(t)
i = X (t−1)

i −X (t)
i ,X (t)

i = −yi log(p(t)i )− (1− yi) log(1− p
(t)
i ), (5)

where X (t)
i denotes the cross-entropy between current segmentation probability and ground truth.

If an agent gets a positive reward, its current action is good, and the refined segmentation result is
closer to the ground truth. With the self-adaptive reward function in (4), the confidence value ci of
these wrong actions is lower, and they will be punished more when training our segmentation model.
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Figure 4: The simulated label generation. The simulated label generation mechanism utilizes the
confidence map and the action map to generate the simulated label. The confidence map is used to
calibrate the action, and the direction of the calibrated action is the simulated label of each voxel.
4.3 Label Generation and Interaction Guidance

Interestingly, the proposed action-based confidence network can enable user-friendly interactions in
addition to alleviating the interactive misunderstanding problem. On the one hand, the confidence
network can generate high-quality labels for unlabeled data (see Figure 4), thus reducing the interac-
tion intensity. Specifically, for unlabeled data, MECCA can be used to leverage the action confidence
to generate simulated labels:

ŷ(t) =

{
1 if a(t) ⊕ c(t) == 1,
0 otherwise ,

(6)

where ŷ(t) is the simulated voxel-level label generated from the confidence map. Then one can
train model by using the unlabeled data with simulated labels. But in order to stabilize the training
process, the gradients of unlabeled data backpropagate only when the action confidence exceeds the
threshold δ. Unlike traditional pseudo-label training, the supervised signal does not come from the
segmentation but from the confidence network. Thus, These filtered data with hint information are
more valuable and provide more accurate supervised signals.

Figure 5: The interaction guide mechanism. The areas surrounded by the green lines are advice
regions, and the red point is the real hint selected from advice regions. The color closer to yellow, the
larger the positive value; otherwise, the smaller the negative value.

On the other hand, one can generate advice regions based on the confidence network to reduce
the interaction difficulty. After refinement, our framework can suggest some possible regions as
advice regions for users to interact with in the next round by filtering out those areas with low action
confidence (see Figure 5). Firstly, the original 3D image will be segmented with super voxels, which
can be regarded as a group of voxels with common characteristics. In this paper, we use simple linear
iterative clustering (SLIC) [44] technique with spacing = [2, 2, 2], compactness = 0.1 to generate
super voxels, and the number of initial super voxels equals to 100 and gradually declines during the
refinement iterations for training and testing. Secondly, the proposed algorithm will compute the
mean action confidence in each super voxel and sort them in descending order. Finally, the top 5
super voxels will be marked and recommended to users.
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5 Numerical Results

5.1 Experiment Settings

The proposed MECCA is evaluated on 4 3D medical image segmentation benchmarks: (1)
BraTS2015: Brain Tumor Segmentation Challenge 2015 [12] contains 274(234/40) multiparamet-
ric MRI(Flair, T1, T1C, T2) from brain tumor patients. we only use the Flair image and segment the
whole brain tumor, and the BraTS2020 dataset is used the same way. (2) BraTS2020: Brain Tumor
Segmentation Challenge 2020 [12] contains 285(235/50) multiparametric MRI(Flair, T1, T1C, T2)
from brain tumor patients. (3) MM-WHS: Multi-Modality Whole Heart Segmentation [45] contains
24(20/4) multi-modality whole heart images covering the whole heart substructures. We choose to
segment the left atrium blood cavity only. (4) Medical Segmentation Decathlon: A generalisable
3D semantic segmentation datasets containing different organ segmentation tasks [46]. We use the
spleen and liver datasets, which provide 61(41/20) and 106(96/10) CT images respectively. The
Dice score [47] and the average symmetric surface distance (ASSD) [48] are used to evaluate the
performance of the segmentation result.

We compare MECCA with 5 state-of-the-art interactive segmentation methods: DeepIGeos [5] ,
InterCNN [10] , IteR-MRL [6] and BS-IRIS [11]. We also introduce the U-Net [49] as a comparable
baseline. For a fair comparison, all CNN-based methods adopt the same network structure (P-Net)
proposed in [5]. We generate the hint map for all tasks by randomly selecting the wrong segmentation
points on the edges with the ground truth. For MECCA, we set learning rates initialized as 1e− 4,
T = 5, γ = 0.95, α = 0.8, β = 1. The training time of the proposed method with one Nvidia 2080ti
GPU varies from 5 to 13 hours for different datasets. The hyperparameters of baselines are consistent
with those in the open source library.

5.2 Main Results

Table 1: Quantitative comparison of 3D medical image datasets segmentation by different methods.
In particular, the P-Net is the method without hint information. Significant improvement (p-value
< 0.05) is marked in bold.

Methods BraTS2020 BraTS2015 MM-WHS Spleen Liver
Dice(%) ASSD(pixels) Dice(%) ASSD(pixels) Dice(%) ASSD(pixels) Dice(%) ASSD(pixels) Dice(%) ASSD(pixels)

P-Net 83.67±8.35 5.78±4.01 84.00±12.01 5.10±3.72 81.40±1.48 3.28±0.45 88.08±2.25 4.25±2.07 35.89±2.61 34.46±23.82
U-Net 84.72±10.42 4.09±3.89 84.66±11.25 6.17±4.69 80.96±1.65 3.72±0.39 87.95±2.87 5.12±1.09 56.00±1.93 22.38±22.42

DeepIGeos 88.54±.97 2.11±1.30 88.32±5.34 2.28±1.24 88.48±0.71 1.53±0.18 91.97±1.51 0.93±0.46 48.57±2.52 10.28±3.45
InterCNN 88.39±6.01 2.01±1.09 88.26±7.07 1.81±2.09 87.85±1.15 0.80±0.15 93.52±0.94 0.54±0.83 59.92±2.20 5.95±2.76
IteR-MRL 89.22±4.65 2.07±0.91 88.94±4.81 1.41±0.22 89.55±0.87 0.90±0.11 91.50±1.34 0.67±0.21 62.29±1.93 0.87±0.59
BS-IRIS 90.47±5.23 1.82±0.33 89.74±3.86 1.61±0.42 89.12±0.98 1.19±0.16 92.35±1.13 0.54±0.19 67.25±2.01 4.34±1.18
MECCA 91.02±5.86 1.15±0.20 90.29±5.07 1.50±0.33 90.39±5.89 0.80±0.01 94.96±1.44 0.30±0.16 71.46±1.41 2.36±0.99

We can see from Table 1 and Figure 6 that our proposed MECCA outperforms other state-of-the-art
methods on all datasets. To demonstrate that our method can take advantage of hint information more
efficiently, we also compare the relative improvement of different methods at each interaction step
using the same amount of hints. The experimental results are shown in Figure 6.

These results suggest that MECCA can effectively use hint information and improve dice scores on
most steps. MECCA and IteR-MRL are RL-based methods, while others are CNN-based methods,
and we can find the main advantage of RL-based methods is that they can always keep notable
improvement. However, we should realize that the RL-based methods still can not guarantee the
high confidence of the corrective actions. As we can see in Figure 6, the performance of IteR-MRL
is not as good as other methods at the beginning, which is caused by numerous incorrect actions.
On the contrary, our proposed MECCA with self-adaptive reward can perform well at each step and
consecutive refine the result.

5.3 Weakly-supervised Interactive Segmentation

As mentioned in Section 4.3, MECCA can reduce the interaction intensity by using the simulated
label generated from the action confidence map. We validate the proposed method on the BraTS2015
dataset by randomly selecting different proportions of samples as fully labeled data and using the
rest of the training images as unlabeled data, which only provided hint information when interacting.
Table 2 shows the results of different methods. Only MECCA and another semi-supervised method
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Figure 6: Left: Visualization of the performance improvement of different methods at the different
interaction steps. All these testing results are performed on the BraTS2015 dataset. Right: Visu-
alization of segmentation results from different methods. The green lines represent ground truth
boundaries, and the yellow lines represent the predictive boundaries.

Table 2: Quantitative comparison between MECCA and other methods on BraTS2015 Dataset of
different sizes. Significant improvement (p-value < 0.05) is marked in bold.

Data amount 1/8 1/4 1/3 1/2 1/1 △(1/8, 1/1)

P-Net 75.86 80.83 80.88 83.02 84.00 10.73%
DeepIGeos 85.50 85.90 87.70 87.60 88.32 3.30%
IteR-MRL 84.36 86.54 87.38 88.66 88.94 5.07%
UA-MT 83.08 84.47 84.62 84.39 84.66 1.90%
MECCA 87.14 88.23 88.31 89.17 90.29 3.60%

UA-MT [50] uses unlabeled data, and the remaining three baselines only use a fixed proportion of
labeled data. As seen from the figure, MECCA achieves a Dice score of 87.14% with only 12.5%
labeled data, and it performs better than baselines with 25% labeled data.

Table 3: DICE of the algorithm under different amounts of interactions and labeled data percentage.

% Labeled Data Interaction Steps
3 4 5 6 7

25% 84.03 86.18 88.23 87.32 88.24
33% 85.32 87.60 88.31 87.99 88.53
50% 85.39 87.07 89.17 88.93 89.13
100% 89.93 90.40 90.29 89.85 90.79

We also test MECCA’s performance under different interaction times, and labeled data percentages
and the results are shown in Table 3. Based on the experimental results, we can obtain the following
conclusions: 1) if there is enough labeled data, MECCA can achieve good results after a few
interactions; 2) the number of interactions required by MECCA to achieve the same performance is
roughly inversely proportional to the number of labeled data; 3) although MECCA requires more
interactions (about 2-3 times the number of interactions) when only part of the labeled data is
available, it can approach the algorithm’s performance trained with all labeled data in the end.

6 Closing Remarks

This paper presents a novel action-based confidence learning method for interactive 3D image
segmentation. Specifically, this paper proposes to learn the confidence of actions that continuously
refine the segmentation result during the interaction process so that hint information can be used more
effectively. Based on this, the self-adaptive reward is proposed for the segmentation module, which
can prevent the interactive misunderstanding phenomenon during the interaction and help reduce
the time cost of interaction by providing users with the advice regions to interact next. Besides, the
confidence map can also replace the ground truth to generate feedback for the unlabeled samples for
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the segmentation module. These samples without voxel-level annotations can also be used to train our
model. Experiments on different segmentation tasks show that MECCA can significantly improve
efficiency in short-term and long-term interactive information utilization. Additional numerical
results in the semi-supervised setting show that MACCA is able to approximate the segmentation
accuracy of SOTA methods using significantly fewer labeled samples.

Acknowledgement. This work was supported in part by Shanghai Project (No. 22511106000,
22QB1402100, 22511106004) and NSFC (No. 12071145).

Our approach’s limitations and potential societal impacts are as follows.

Limitations. This work investigates interactive medical segmentation under a uni-modality setting
based on human-in-the-loop with self-adaptive confidence calibration. However, 3D segmentation
with the multi-modality medical image is more realistic and clinically instructive. We will discuss
interactive segmentation methods for multimodal images in our future work. In addition, although
MECCA requires 45 points for interaction, it is still a burden for users. Therefore, it might be possible
to reduce the number of interaction points using generated interaction points in future work.

Ethics Statement. Our method is not a generative model, nor does it involve super large-scale
models. The training data is sampled in the simulated environments, so it does not involve fairness
issues. Our method also does not involve model or data stealing and adversarial attacks.
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