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Abstract

Social dilemmas can be considered situations where individual rationality leads to collective irrational-
ity. The multi-agent reinforcement learning community has leveraged ideas from social science, such as
social value orientations (SVO), to solve social dilemmas in complex cooperative tasks. In this paper,
by first introducing the typical “division of labor or roles” mechanism in human society, we provide a
promising solution for intertemporal social dilemmas (ISD) with SVOs. A novel learning framework,
called Learning Roles with Emergent SVOs (RESVO), is proposed to transform the learning of roles
into the social value orientation emergence, which is symmetrically solved by endowing agents with al-
truism to share rewards with other agents. An SVO-based role embedding space is then constructed by
individual conditioning policies on roles with a novel rank regularizer and mutual information maximizer.
Experiments show that RESVO achieves a stable division of labor and cooperation in ISDs with different
complexity.

1 Introduction

The continuity of human civilization and the prosperity of the race depends on our ability to cooperate.
From evolutionary biology to social psychology and economics, cooperation in human populations has been
regarded as a paradox and a challenge (Fehr and Fischbacher, 2003; Pennisi, 2009; Santos et al., 2021).
Cooperation issues vary in scale and are widespread in daily human life, ranging from assembly line operations
in factories and scheduling of seminars to peace summits between significant powers, business development,
and pandemic control (Dafoe et al., 2020).

Although cooperation can benefit all parties, it might be costly. Thus, the temptation to evade any cost
(i.e., the free-riding) becomes a tempting strategy, which leads to cooperation collapsing, or the multi-person
social dilemma (Rapoport et al., 1965; Xu et al., 2019). That is, “individually reasonable behavior leads to
a situation in which everyone is worse off than they might have been otherwise” (Kollock, 1998). Just as
cooperation widely exists in human social, economic, and political activities, most thorny problems we face,
from the interpersonal to the international, are at their core social dilemmas. This article presents two cases
in recent years closely related to the future economic and political decisions of countries, namely autonomous
driving and carbon trading, and the role of social dilemmas in them.

Autonomous driving (AV), which promises world-changing benefits by increasing traffic efficiency (Van Arem
et al., 2006), reducing pollution (Spieser et al., 2014), and eliminating up to 90% of traffic accidents (Gao
et al., 2014), is a very complex systems engineering. Existing work mainly focuses on accomplishing generic
tasks, such as following a planned path while obeying traffic rules. However, there are many driving scenar-
ios in practice, most of which have social dilemmas. Examples include lane changing (Dafoe et al., 2020),
meeting, parking (Li, 2022), and even ethical aspects of aggressive versus conservative driving behavior
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choices (Bonnefon et al., 2016). Therefore, the practicality of AV depends on the efficient solution to social
dilemmas.

Carbon trading is a greenhouse gas emission right (emission reduction) transaction based on the United
Nations Framework Convention on Climate Change established by the Kyoto Protocol to promote the re-
duction of greenhouse gas emissions, using a market mechanism (Grimeaud, 2001). Carbon emission is a
representative social dilemma in which countries’ direct gas emissions for the sake of economic develop-
ment undermine collective interests. The typical mechanisms in carbon trading, such as distribution of
allowances (Fullerton and Metcalf, 2014), joint implementation (Grimeaud, 2001), etc., have obvious cor-
respondences with the boundaries (Ibrahim et al., 2020a,b) and institutions (Koster et al., 2020; Lupu and
Precup, 2020) used to solve social dilemmas in economics and social psychology.

The social dilemma has been comprehensively studied in economics, social psychology, and evolutionary
biology in the past few decades. This paper focuses on the public good dilemma in the intertemporal social
dilemma (ISD). A public good is a resource from which all may benefit, regardless of whether they have
helped provide the good (producer) (Kollock, 1998). This is to say that public goods are non-excludable.
As a result, there is the temptation to enjoy the good (consumer) without contributing to its creation or
maintenance. Those who do so are termed free-riders, and while it is individually rational to free-ride if all
do so, the public good is not provided, and all are worse off.

Artificial intelligence (AI) advances pose increasing opportunities for AI research to promote human
cooperation and enable new tools for facilitating cooperation (Dafoe et al., 2020). Recently, multi-agent
reinforcement learning (MARL) has been utilized as a powerful toolset to study human cooperative behavior
with great success (Lowe et al., 2017; Silver et al., 2018; Jaderberg et al., 2019; Liao et al., 2020; Li et al., 2022).
We believe it is reasonable to use MARL as a first step in exploring the use of AI tools to study multi-person
social dilemmas. The current model for reinforcement learning suggests that reward maximization is sufficient
to drive behavior that exhibits abilities studied in the human cooperation and social dilemmas, including
“knowledge, learning, perception, social intelligence, language, generalization and imitation” (Yang, 2021;
Silver et al., 2021; Vamplew et al., 2022). The justification for this claim is deeply rooted in the von Neumann
Morgenstern utility theory (von Neumann and Morgenstern, 2007), which is the basis for the well-known
expected utility theory (Schoemaker, 2013) and essentially states that it is safe to assume an intelligent entity
will always make decisions according to the highest expected utility in any complex scenarios1 (Yang, 2021).

In MARL, the critical issue of multi-person social dilemma can be formalized as an ISD (Leibo et al.,
2017; Hughes et al., 2018b), and most MARL methods have introduced ideas from social psychology and
economics more or less. These methods could be divided into three categories, strategic solutions, structural
solutions, and motivational solutions, based on whether the solutions assume egoistic agents and whether
the structure of the game can be changed (Kollock, 1998) according to the taxonomy of social science.

Structural solutions reduce the difficulty of the original social dilemma by changing the game’s rules or
completely avoiding the occurrence of the social dilemma. The mechanisms introduced into MARL mainly
include boundaries and sanctions (Ostrom, 1990). Ibrahim et al. (2020a) indirectly sets boundaries for re-
sources by introducing a shared periodic signal and a conditional policy based on this signal, allowing agents
to access shared resources in a fixed order. Ibrahim et al. (2020b) achieves resource boundarization by intro-
ducing a centralized government module through taxation and wealth redistribution.. Koster et al. (2020);
Lupu and Precup (2020) introduce a centralized module and use rules and learning methods to punish the
free-riding agent separately. LIO (Yang et al., 2020) enables each agent to punish, thereby implementing
the sanction mechanism in a decentralized manner. Vinitsky et al. (2021) adopts a combination of cen-
tralized and decentralized modules and judges the decentralized sanctioning behavior of the agent through
the centralized module, thereby encouraging appropriate sanctioning behaviors and avoiding unreasonable
behaviors. Furthermore, Dong et al. (2021) introduces homophily into the MARL to solve the second-order
social dilemma caused by sanctions.

Strategic solutions assume that all individuals in the group are egoists and that the algorithm does

1Although follow-up works have shown that some of the assumptions on rationality could be violated by real decision-makers
in practice (Gigerenzer and Selten, 2002), those conditions are rather taken as the “axioms” of rational decision making (Yang,
2021).
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not change the game’s structure. Such methods rely on an individual’s ability to shape other individuals’
payoffs, thereby directly influencing the behavior of others. Direct and indirect reciprocity is the main
mechanisms introduced into MARL. Eccles et al. (2019) introduces the classic direct reciprocity algorithm
tit-for-tat (Axelrod and Hamilton, 1981) into the solution of ISD. In order to realize the “imitation” at
the core of tit-for-tat and the definition of the binary action (cooperate and defect) in ISD, Eccles et al.
(2019) divides the agents into innovators and imitators and introduces the niceness function based on the
deep advantage function. Anastassacos et al. (2021) introduces two core concepts of indirect reciprocity,
reputation and social norm (Santos et al., 2021) into MARL and uses them as fixed rules to construct the
agent’s action space.

Motivational solutions assume agents are not entirely egoistic and so give some attention (passively or
actively) to the outcomes of their partners. One of the typical mechanisms is communication. Across a wide
variety of economics and social psychology studies, when individuals are given a chance to talk with each
other, cooperation increases significantly (Orbell et al., 1988, 1990). Although there are many works (Sheng
et al., 2020; Ahilan and Dayan, 2021) on communication learning in MARL, little attention has been paid
to the role of communication in solving ISD. Pretorius et al. (2020) first uses empirical game-theoretic
analysis (Tuyls et al., 2018) to study existing communication learning methods in ISD and to verify the
effects of these methods experimentally. Another typical mechanism is social value orientation. Social
value orientations (SVOs), or heterogeneous distributive preferences (Batson, 2012; Cooper and Kagel, 2016;
Eckel and Grossman, 1996; Rushton et al., 1981; Simon, 1993), are widely recognized in social psychology
and economics as an effective mechanism for promoting the emergence of human cooperative behavior in
different social dilemmas (McKee et al., 2020).

Prisoner A's Perspective Prisoner B's Perspective

Dominated Strategy

5 years x 1 + 5 years x 0 0 year x 1 + 20 years x 0

20 years x 1 + 0 year x 0

5 years 0 year

20 years 1 year

1 year x 1 + 1 year x 0

Transformation coefficients: (1, 0)

Individualism

20 years x 0 + 0 year x 1

5 years

0 year 1 year

1 year x 0 + 1 year x 1

0 year x 0 + 20 years x 15 years x 0 + 5 years x 1

20 years

Transformation coefficients: (0, 1)

Altruism

5 years x 1 + 5 years x -1 0 year x 1 + 20 years x -1

20 years x 1 + 0 year x -1

"-20" years

20 years 0 year

1 year x 1 + 1 year x -1

Transformation coefficients: (1, -1)

Competitive
0 year

5 years x 1/4 + 5 years x 3/4 0 year x 1/4 + 20 years x 3/4

20 years x 1/4 + 0 year x 3/4

5 years 15 years

5 years 1 year

1 year x 1/4 + 1 year x 3/4

Transformation coefficients: (1/4, 3/4)

Cooperative

Pro-self preferences Pro-social preferences

Figure 1: Interdependence theory in the prisoner’s dilemma (Encyclopædia Britannica, 2022): the four
pathways depict transformation processes for a row player who has individualistic, competitive, cooperative,
and altruistic preferences, respectively; four resulting transformations suggest different dominant strategies
(highlighted in green).

The above three types of methods mainly make breakthroughs in methodology and are accompanied by
simulation experiments to verify the correctness of the conclusions. Considering the completeness of the
theory and the feasibility of convergence analysis, this paper mainly focuses on solving intertemporal or
public good social dilemmas based on social value orientations. The aforementioned mainstream conclusions
about SVO from social psychology and economics are mainly supported by interdependence theory (Hansen,
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1982). In social psychology and economics games, classical game theory does not accurately predict human
behavior. This is because, in these human-involved games, each player does not rely on the given payoff
matrix to make decisions but on their own “effective” payoff matrix (Hansen, 1982; McKee et al., 2020).
The effective payoff matrix is constructed by redistributing payoffs for the given payoff matrix based on
the players’ respective SVOs. As seen from Figure 1, different SVO will make players choose different
dominant strategies when facing the prisoner’s dilemma, thus affecting the emergence of cooperation. Many
different social value orientations are theoretically possible, but most work has concentrated on various linear
combinations of individuals’ concern for the rewards for themselves and their partners.

Inspired by the interdependence theory, many previous works have introduced the SVO into MARL to
solve the ISD (Peysakhovich and Lerer, 2018b; Hughes et al., 2018a; Zhang et al., 2019; Wang et al., 2019;
Baker, 2020; Gemp et al., 2022; Yi et al., 2021; Ivanov et al., 2021; Schmid et al., 2021). Peysakhovich
and Lerer (2018b) introduces the SVO into MARL for the first time and proposes the concept of prosocial,
that is, cooperative orientation agents. The reward function of a prosocial agent is shaped as a fixed linear
combination of its reward and the others. Hughes et al. (2018a) introduces an inequity aversion model in ISD,
namely equality orientation, which promotes cooperation by minimizing the gap between one’s return and
that of other individuals. The latter work is no longer satisfied with a fixed linear combination and begins
to introduce trainable weight parameters. Baker (2020) first attempts to randomize the linear weights
of one’s and others’ rewards to observe whether cooperative behavior emerges. Since the linear weights
are always greater than 0, all agents can be roughly classified into three categories: cooperative-oriented,
altruistic-oriented, or individual-oriented. Going a step further, D3C (Gemp et al., 2022) optimizes the linear
combination weights by using the ratio of the worst equilibrium to the optimal solution (Price of Anarchy,
PoA) that measures the quality of the equilibrium points. Concurrent work LToS (Yi et al., 2021) models the
optimization problem of linearly transforming weights as a bi-level problem and uses an end-to-end approach
to train weights and policies jointly. Considering the noise or privacy issues that instantaneous rewards for
SVO modeling may introduce, some recent works shape the agents’ reward in other ways. Schmid et al. (2021)
realizes the conditional linear combination of agent rewards by introducing the idea of the market economy.
Zhang et al. (2019) and Ivanov et al. (2021) use state-value and action-value functions to implement SVO
modeling. Wang et al. (2019) directly uses reward-to-go and reward-to-come, combined with evolutionary
algorithms, to optimize the weights of nonlinear (MLP-based) combinations. However, these methods cannot
stably and efficiently converge to mutual cooperation under complex ISDs, which are further verified in our
numerical experiments in Section 4.

The conceptual diagram of our solution is shown in Figure 2. Specifically, we find that a typical mech-
anism of human society, i.e., division of labor or roles, can benefit from providing a promising solution for
the ISD combined with SVOs. The effectiveness of the division of labor in solving the ISD has emerged in
existing MARL works but is still underexplored. The numerical results from sanction-based methods Yang
et al. (2020); Vinitsky et al. (2021) on the typical ISD task Cleanup (Hughes et al., 2018b) and Allelopathic
Harvest (Köster et al., 2020) show that policies solving ISDs effectively exhibit a clear division of labor (Fig-
ure 3). Many natural systems feature emergent division of labor, such as ants (Gordon, 1996), bees (Jeanson
et al., 2005), and humans (Butler, 2012). In these systems, the division of labor is closely related to the
roles and is critical to labor efficiency. The division of labor, or the role theory, has been widely studied
in sociology and economics (Institute, 2013). A role is a comprehensive pattern of behavior, and agents
with different roles will show different behaviors. Thus the overall performance can be improved by learning
from others’ strengths (Wang et al., 2020). These benefits inspired multi-agent system designers, who try to
reduce the design complexity by decomposing the task and specializing agents with the same role to certain
sub-tasks (Wooldridge et al., 2000; Omicini, 2000; Padgham and Winikoff, 2002; Pavón and Gómez-Sanz,
2003; Cossentino et al., 2005; Zhu and Zhou, 2008; Spanoudakis and Moraitis, 2010; DeLoach and Garcia-
Ojeda, 2010; Bonjean et al., 2014). However, roles and the associated responsibilities (or subtask-specific
rewards Sun et al. (2020)) are predefined using prior knowledge in this systems (Lhaksmana et al., 2018).
Although pre-definition can be efficient in tasks with a clear structure, such as software engineering (Bres-
ciani et al., 2004), it hurts generalization and requires prior knowledge that may not be available in practice.
To solve this problem, Wilson et al. (2010) uses Bayesian inference to learn a set of roles, and ROMA (Wang
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Figure 2: The conceptual diagram of the proposed RESVO, which is based on the social value orientations
combined with a typical “division of labor or roles” mechanism, can benefit from providing a promising solu-
tion for the intertemporal social dilemma. RESVO is divided into two training phases of joint optimization
and interleaved update: SVO-based role or division of labor emergence and role or division-based policy opti-
mization. In the first phase, RESVO transforms the learning of roles into a social value orientation emergence
problem, which is symmetrically solved by endowing agents with altruism to learn to share rewards with
other agents. An SVO-based role embedding space is then constructed by conditioning individual policies
on roles with a novel rank regularizer and mutual information maximizer. Moreover, RESVO optimizes the
policies based on the multi-agent policy gradient theorem in the second phase by maximizing the shaped
rewards of all agents with different emerged social value orientations.

et al., 2020) designs a specialization objective to encourage the emergence of roles. Wang et al. (2021)
improves the learning efficiency in hard-exploration tasks by first decomposing joint action spaces according
to action effects, which makes role discovery much more effortless. Unfortunately, none of these methods
considers the intertemporal social dilemma.

Drawing the insight from studies in social psychology that characteristics of laborers, or roles, influence
the SVOs reciprocally (Sutin and Costa, 2010; Holman and Hughes, 2021), this paper uses the agent’s
SVO to represent the role of each agent, transforming the role learning problem into the emergence of the
agent’s SVO, thereby naturally constructing a role-based framework in MARL to solve ISD. Specifically, we
use the SVOs, i.e., the coefficients in the transformation matrices from independence theory, to represent
each agent’s role, e.g., (0, 1) in individualistic preference and (0.5, 0.5) in cooperative preference. This
method assumes that all agents will have real-time access to one another’s rewards while learning. However,
making reward data unrestrictedly accessible is undesirable for several reasons. For example, agent designers
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(b) (c) (d)

Figure 3: (a) is a snapshot of the division of labor found by Yang et al. (2020) in Cleanup task, where the
blue agent picks apples, and the purple one stays on the riverside to clean waste. In contrast, (b) shows a
jointly suboptimal division where two failure agents compete for apples. (c-d) Vinitsky et al. (2021) shows
similar results in Allelopathic Harvest task.

want to imperceptibly modify the agent’s reward function or prohibit from sharing their agents’ reward
function (Kairouz et al., 2021). This makes the emergence of social value orientation unfeasible, making it
impossible to promote the division of labor based on SVOs.

0.3
0.30.2

0.2
0.2

0.2

0.6

0.5 0.5
0.3 0.30.2

0.2
0.2

0.2

0.6

0.5 0.5

Figure 4: Symmetrically converting (left) the social value orientation learning problem to (right) the learning
to share problem in a three-agents environment. The circles of different colors represent different agents,
and the numbers of different colors represent the parameters that each agent needs to learn. Assuming that
r1, r2, and r3 represent the extrinsic reward of each agent, the shaped reward of A1 is 0.6r1 + 0.2r2 + 0.2r3.
The shaped rewards of other agents can also be computed similarly.

Inspired by the fact that altruism plays a crucial role in human’s solution to social dilemmas (Kollock,
1998; Eisenberg and Mussen, 1989), that is, consumers altruistic share a part of their profits with producers,
this paper proposes a novel algorithm framework, called Learning Role with Emergent SVO (RESVO), that
establish a symmetric relationship between SVO emergence and learning to share. RESVO encourages agents
to learn to dynamically share the reward with other agents (see Figure 4). In this learning paradigm, the
learnable parameters, or the SVO of each agent, are the proportions2 of rewards it receives from other agents
to the extrinsic rewards of these reward giver. We take these emergent SVOs as the role representations
of each agent. RESVO then imposes a novel low-rank constraint on the SVO matrix of all agents to
effectively represent the different roles of agents and uses projected gradient descent to solve constrained
optimization problems. Furthermore, to establish the connection between roles and decentralized policies,
RESVO conditions agents’ policies on individual emergent SVOs by explicitly feeding agents’ SVO-based role
embeddings into their local policies correspondingly. Furthermore, to associate roles with responsibilities,
we propose to learn SVOs that are identifiable by agents’ long-term behaviors by maximizing the conditional

2The reward-receiver agent cannot access these proportions, so it is impossible to reverse infer the reward giver’s reward.

6



mutual information between the individual trajectory and the emergent SVO given the current observation
and other agents’ actions, which is similar as (Wang et al., 2020).

2 Preliminaries

Although studies on social dilemmas have contributed significantly to the research of cooperation emergence
for decades (Axelrod and Hamilton, 1981; Peysakhovich and Lerer, 2018a; Anastassacos et al., 2020), they
focus on matrix games and fixed binary policies. To be more realistic, as in real-world situations, the MARL
community considers the intertemporal social dilemmas (ISDs, Leibo et al. (2017); Hughes et al. (2018b)).
Before conducting numerical experiments, we first give the formal definition of ISD as follows. An ISD can
be modeled as a partially observable general-sum Markov game (Hansen et al., 2004),

M =
〈
I,S, {Ai}Ni=1 , {Oi}

N
i=1 ,P, E , {Ri}

N
i=1

〉
,

where I represents the N -agent space. s ∈ S represents the true state of the environment. We consider
partially observable settings, where agent i is only accessible to a local observation oi ∈ Oi according to
the emission function E(oi | s). At each timestep, each agent i selects an action according to a policy
ai ∈ πi (a | oi), forming a joint action a = 〈a1, . . . , aN 〉 ∈ ×Ai, results in the next state s′ according to
the transition function P (s′ | s,a) and a reward ri = Ri(s,a). In ISDs, agents must learn cooperation or
defection policies consisting of potentially long sequences of environmental actions instead of taking atomic
cooperation or defection actions. In this paper, we focus on the episodic game with horizon T , and the goal
of each agent is to maximize the local expected return, i.e.,

Qπi (s,a) = Es0:T ,a0:T∼π,P

[
T∑
t=0

γtRi (st,at) | s0 = s,a0 = a

]
.

3 Methods

This section proposes a novel learning framework, RESVO, that transforms role-based learning into an SVO
emergence problem to solve the ISD. Because consumers altruistically share a part of their profits with
producers and making reward data unrestrictedly accessible is undesirable for several reasons, the proposed
RESVO achieves SVO emergence by endowing agents with altruism to learn to share rewards with different
weights to other agents. An SVO-based role embedding space is then constructed by introducing a novel low-
rank constraint and conditioning individual policies on roles to ensure that the emergent SVO can effectively
represent the different roles of agents and associate roles with responsibilities. Therefore, the following
content in this section will be expanded from two aspects: SVO-based role emergence and role-based policy
optimization.

3.1 SVO-based Role Emergence

As mentioned in Section 1, to consider the fact that consumers altruistically share a part of their profits
with producers and avoid the realistic constraint (making reward data unrestrictedly accessible) imposed
by directly learning the SVO of each agent according to the independence theory, RESVO enables agents
to learn to dynamically share the reward with other agents, as shown in Figure 4. Specifically, the SVO-
based role emergence mechanism learns an orientation function for each agent by explicitly accounting for
its impact on recipients’ behavior and, through them, the impact on its extrinsic objective. Each agent gives
rewards using its orientation function and learns an SVO-conditioned policy with all received rewards. For
clarity, we use index i when referring to the reward-sharing part of an agent, and we use j for the part that
learns from the received reward, which is similar with Yang et al. (2020).

A reward-sharing agent i learns a individual orientation function, wiηi : Oi ×A−i 7→ RN , parameterized
by ηi, that maps its own observation oi and all other agents’ actions a−i to a vector of reward-sharing ratios

7



for all N agents. Unlike the existing methods based on SVO (Peysakhovich and Lerer, 2018b; Baker, 2020;
Gemp et al., 2022; Yi et al., 2021) or saction (Koster et al., 2020; Lupu and Precup, 2020; Yang et al., 2020;
Vinitsky et al., 2021; Dong et al., 2021) mechanism, the orientation function in RESVO (1) allows agents
to reward itself 3, and (2) the sum of all sharing ratios does not need to be equal to 1. This is one of the
reasons why reward sharing, a mechanism used by existing work, can encourage the division of labor and
solve ISD. The intuition behind this lies in the particular properties of the public good dilemma. If there is
a good division of labor among agents, the reward (punishment) of the agent does not come entirely from
its behavior but partly from the producers (the consumers). Therefore, the agent that gets the reward needs
to share a part with other agents and only gets a part of it (corresponding to the first point); Moreover, in
a multi-agent scenario, a reward may come from the behavior of multiple producers, so it needs to share the
same reward with multiple agents (corresponding to the second point).

Similar with Lupu and Precup (2020); Yang et al. (2020), wηi is separate from the agent’s conventional
policy and is learned via direct gradient descent on the agent’s extrinsic objective to reduce the learning
difficulty. Specifically, at each timestep t, each recipient j receives a total reward

rj(η, r) := wjηj [j] · rj +
∑
i6=j

wiηi [j] · ri, (1)

where wjηj [j] and wiηi [j] denotes the j-th elements of wjηj and wiηi respectively, r := [r0, · · · , rN ],η =
[η1, · · · , ηN ]. Although the sharers’ rewards appear in Equation 1, the recipients can only see the sharers’ dis-
counted rewards when implemented. Each agent j learns a SVO-based role conditioned policy πj(· | oj , ej(η))
parameterized by θj , where ej(·) is the SVO-based role embedding of agent j. After each agent has updated

its policy to π̂j , parameterized by new θ̂j , with role-based policy optimization (Section 3.2) via trajectories
τi sampled by joint policies {πj}, we sample a set of new trajectories with new joint policy {π̂j}. Using
these trajectories, each agent i updates the individual orientation parameters ηi to maximize the following
objective

max
ηi

J svo(τ̂i, τi, θ̂,η) := Eπ̂

[
T∑
t=0

γtr̂ti

]
, s.t. rank(W t

η) = k, ∀t ∈ [0, T ), (2)

where r̂ti is the newly sampled extrinsic reward in θ̂i, W
t
η = {wi,tηi }

N
i=1 is the matrix composed of the reward

sharing ratios of all agents at timestep t, and k ≤ N is a hyperparameter. To ensure that the emergent
SVO can effectively represent the different roles of agents, RESVO introduces a novel rank constraint on
the SVO matrix W t

η of all agents, and k can be regarded as the theoretical optimal number of roles. To
be able to optimize (2) with an automatic differentiation toolkit in an end-to-end manner, we transform (2)
into the following unconstrained optimization problem based on projected gradient descent by introducing
an intrinsic reward

max
ηi

J svo := Eπ̂

[
T∑
t=0

γt
(
r̂ti − α‖W i,t

ηi −W
i,t
k ‖

2
2

)]
, (3)

whereW t
k is the k-rank approximation ofW t

η obtained with SVD algorithm and αt is another hyperparameter,
and superscription i denotes the i-th column of the matrix. In practice, following the derivation process
of (Yang et al., 2020), one can define the loss as

−
T∑
t=0

N∑
j=1

log πj
θ̂j

(
âtj | ôtj , êtj(η)

)
·

T∑
`=t

γ`−t
(
r̂`i − α‖∆i,`(W,k)‖22

)
− 2α∇ηiW i,t

ηi ∆i,t(W,k),

(4)

3But, this does not mean that the orientation function will converge to some trivial function, such as the agent giving itself
an infinite reward. Because the final reward received by the agent is its reward multiplied by the sharing ratio, and the sharing
ratio is in the closed range of 0 to 1.
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and directly minimize it via automatic differentiation, where ∆i,`(W,k) := W i,`
ηi −W

i,`
k and ∆i,t(W,k) :=

W i,t
ηi −W

i,t
k . Crucially, θ̂j must preserve the functional dependence of the policy update step (7) on ηi within

the same computation graph.
It is worth noting that the agent’s role representation ei(η) is NOT composed of its reward sharing

ratios wiηi . However, its reward recipient ratios, i.e., we take the i-th row in the matrix W t
η as the role

representation of agent i at timestep t, as shown by interdependence theory in Figure 1. Intuitively, agents
with similar role representations have similar divisions of labor and thus receive similar rewards. In other
words, RESVO decomposes the extrinsic reward received by all agents into several parts according to the
functional composition of the agent during the SVO emergence learning stage. The difference in rewards
will directly lead to differences in the agents’ policies, thereby encouraging the formation of the division of
labor among the agents.

3.2 Role-based Policy Optimization

Introducing SVO-based role embedding and conditioning individual policies on this embedding explicitly
establishes the connection between the role and the individual policies to encourage the division of labor
through the diversity of roles. However, this does not enable the role to constrain the agent’s long-term
behavior. Intuitively, conditioning roles on local observations and actions4 enables roles to be responsive to
the changes in the environment but may cause roles to change quickly. Thus roles and responsibilities cannot
be effectively associated. To address this problem, we expect SVO-based roles to be temporally stable.

Drawing inspiration from Eysenbach et al. (2019); Wang et al. (2020), we propose to learn SVO-based
roles that are identifiable by agents’ long-term behaviors, which can be achieved by maximizing I(τi; ei | o,a),
the conditional mutual information between the individual trajectory and the role given the current joint
observation and joint action. The conditional mutual information calculated here is based on the joint
actions and observations of all agents because ei cannot be generated by local observations oi. The role
representation of agent i, ei, is the i-th row in the matrix Wη. Based on variational inference, a variational
posterior estimator can be proposed to derive a tractable lower bound for the mutual information objective

max
η,φ

Jmi
i := I(eti; τ

t−1
i | ot,at) ≥ Eeti,τt−1

i ,ot,at

[
log

qφ
(
eti | τ

t−1
i ,ot,at

)
Wη (eti | ot,at)

]
, (5)

where “mi” stands for “mutual information”, τ t−1i =
(
o0i , a

0
i , · · · , o

t−1
i , at−1i

)
5 and qφ is the variational

estimator parameterized by φ. Here we use Wη to represent orientation function wiηi of all agent i. For
qφ, we use a causal transformer (Chen et al., 2021) (shared by all agents) to encode an agent’s history of
observations and actions. The lower bound in (5) can be further rewritten as a loss function to be minimized
via automatic differentiation

Lmi (τ ;η, φ) =
1

n

N∑
i=1

Lmi
i (τi;η, φ)

= E
[
DKL

[
Wη

(
eti | ot,at

)
‖qφ

(
eti | τ t−1i ,ot,at

)]]
,

(6)

where DKL[·‖·] is the KL-divergence operator, and the conditioned terms in p, qφ are omitted for convenience.
See the Appendix for the detailed derivation.

In addition, to further improve learning stability, the individual policies are no longer based on the current
role embedding but on the latest m role embeddings to make decisions. That is, each agent j learns a SVO-
based role conditioned policy πj(a

t
j | otj , {elj(η)}tl=t−m+1) parameterized by θj . Our experiments found

that for complex ISDs with long episodes, mutual information constraints and decision-making based on
historical role embeddings can be crucial in improving performance. Thus, the objective of role-based policy

4The orientation function wiηi maps agent i’s observation oi and all other agents’ actions a−i to a vector of reward-sharing
ratios for all N agents.

5There’s a bit of misuse of notation here, and compared to Section 3.1, no rewards are included in the trajectory here.
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optimization for each agent j is shown as follows based on the multi-agent policy gradient theorem (Lowe
et al., 2017)

max
θj

Jpolicy(θj ,η) := Eπ(·|·,ej(η))

[
T∑
t=0

γtrtj(η, r
t)

]
. (7)

3.3 Algorithm Summary

The learning process of RESVO consists of two main steps, namely, SVO-based role emergence (Eq. 2) and
role-based policy optimization (Eq. 7). To improve the expressiveness and responsibility of role representa-
tion, we additionally impose rank constraints (Eq. 2) and mutual information regularization (Eq. 5) to the
objectives of role emergence and policy optimization. Therefore, the final learning objective of RESVO for
each agent i is

max
θi,ηi,φ

J :=

role emergence︷ ︸︸ ︷
λsvoJ

svo + λmiJ
mi + λpJ

policy︸ ︷︷ ︸
policy optimization

, (8)

where λsvo, λmi, λp are scaling factors. Furthermore, the pseudo-code of the proposed RESVO is shown in
Algorithm 1.

Algorithm 1 Leanring Role with Emergent SVO (RESVO)

Require: Initialize parameters of policies θi, orientation function ηi, variational estimator φ;
1: for each iteration do
2: Collect interaction τi with πψi

and update replay buffer D ← {τi};
3: Generate trajectories {τi} using θ and η, and for all reward receivers j, update θ̂j via (7);

4: Generate new trajectories {τ̂i} using new θ̂ and for reward sharers i, compute η̂i via (2),(5);

5: For variational estimator, compute φ̂ via (5), θi ← θ̂i, ηi ← η̂i for all i, φ← φ̂.
6: end for

4 Experiments

Although studies on social dilemmas have contributed significantly to the research of cooperation emergence
for decades (Axelrod and Hamilton, 1981; Peysakhovich and Lerer, 2018a; Anastassacos et al., 2020), they
focus on matrix games and fixed binary policies. To be more realistic as in real-world situations, the MARL
community considers the intertemporal social dilemmas (ISDs, Leibo et al. (2017); Hughes et al. (2018b), see
Appendix 2 for the formal definition) which can be modeled as a partially observable general-sum Markov
game (Hansen et al., 2004).

Cooperate
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Defect
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t

-1

-1 -3

0

0

-3 -2

-2

-1 -1

-1 -1 -1
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Iterated Prisoner's Dilemma N-Player Escape Room, N=3, M=2 Cleanup

Figure 5: Three different environments with increasing complexity.
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Our experiments demonstrate that the division of labor can effectively solve the ISDs of different difficul-
ties. Moreover, compared with other mechanisms, the division of labor can converge to mutual cooperation
faster and more stably. Our method is tested in the following three typical public good dilemmas with
increasing complexity (see Figure 5) against several baselines.

• The first one, Iterated Prisoner’s Dilemma (IPD) (Foerster et al., 2018), is often regarded as the
canonical and most difficult of 2-by-2 game-theoretic cooperation problems. The prisoner setting may
seem contrived, but there are, in fact, many examples of human interaction as well as interactions in
nature that have the same payoff matrix. Many natural processes have been abstracted into models in
which living beings are engaged in endless games of prisoner’s dilemma, e.g., the climate-change politics
in environmental studies (Rehmeyer, 2012), the reciprocal food exchange of vampire bats (Davis,
2017), the doping in sport (Schneier, 2012) and the coherence of strategic realism in the international
political (Majeski, 1984). This broad applicability of the PD gives the game substantial importance.
In an IPD, agents observe the joint action taken in the previous round and receive rewards in Figure 5.
Although, by definition, a public good dilemma needs to contain more than 2 agents (Kollock, 1998), the
prisoner’s dilemma can be viewed as a simplified version. The agent that selects the “cooperate” action
corresponds to the “producer”, and the agent that selects the “defect” corresponds to the “consumer”.
In this simplified version of the public good dilemma, defect or free-riding is the dominant strategy.

• The second one, N -Player Escape Room (ER) (Yang et al. (2020, Figure 1)), is a discrete N -player
Markov game with parameter M < N . ER is a more complex public good dilemma. Since M = 2,
N = 3, the optimal joint policy of the game has an asymmetric division of labor, which is also
widespread in the economic activities of human society. Specifically, there are 3 discrete states in
this game, i.e., “start”, “door” and “lever”. An agent gets +10 extrinsic reward for exiting a “door”
and ending the game, but the “door” can only be opened when M other agents cooperate to pull the
“lever”. However, an extrinsic penalty of −1 for any movement discourages all agents from taking this
cooperative action.

• In the third one, Cleanup (Leibo et al., 2017; Hughes et al., 2018b) is a high-dimensional grid-world
intertemporal social dilemma that serves as a problematic benchmark for independent learning agents.
Moreover, the Cleanup can also be considered as a simplified version of the tax simulator, Gather-
Trade-Build (GTB) (Zheng et al., 2022), but since there is no significant division of labor in the tasks
involved in the latter, it is not considered in this paper. In the Cleanup, agents get +1 (for the small
10 by 10 map) or +0.25 (for the big 48 by 18 map) reward by collecting apples, which spawn on the
map at a linear decay rate as the amount of waste approaches a depletion threshold. Each episode
starts with a waste level above the threshold and no apple present. An agent can contribute to the
public good by firing a cleaning beam to clear waste (no reward). This would enable other agents to
be free riders, resulting in a problematic public good dilemma.

We selected the aforementioned role learning algorithm, ROMA (Wang et al., 2020), and sanction-based
algorithm, LIO (Yang et al., 2020), as the baselines because our RESVO draws on the core ideas of them in
the SVO-based role emergence and the role-based policy optimization6 respectively. In addition, we selected
several aforementioned SVO-based algorithms, including LToS (Yi et al., 2021) and D3C (Gemp et al.,
2022) as baselines. Below we will briefly introduce the core idea of each algorithm again. ROMA designs
an end-to-end specialization learning objective to encourage the emergence of roles in general MARL tasks
for better cooperation and generalization and avoid the requirement of prior or expert knowledge. LIO
enables each agent to punish, thereby implementing the sanction mechanism in a decentralized manner.
LToS uses a bi-level optimization scheme similar to LIO but uses meta-gradients instead of data sampled by
other agents’ updated policies for the learning of SVOs; D3C uses the price of anarchy instead of the joint
expected cumulative reward in LToS as the optimization objective of SVOs. Meanwhile, the SVO-based
role emergence mechanism in RESVO can be introduced into other SVO-based methods as a plug-and-play
module. In order to verify the general promotion effect of the division of labor on SVO-based methods, we

6See Method (Section 3) for more details.
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added the role learning mechanism in RESVO to two SVO-based works, denoted as LToS+r and D3C+r
respectively.

4.1 Role Emergence in the Classic Tasks

(a) (b)

(c) (d)

Figure 6: Extrinsic (a-b) and received rewards (c-d) of different algorithms in Iterated Prisoner’s Dilemma.
Since ROMA is not designed based on SVO, rewards will not be transmitted between agents.

We first analyze the performance of each algorithm on the 2-players task, IPD. Figure 6 shows the
performance and emerged SVOs of RESVO and the performance of four baselines in the IPD environment.
In the IPD, a simplified version of the public good dilemma, we want both agents to be producers (that is,
to cooperate with each other) to achieve the highest social welfare. Therefore, we set the rank constraint in
RESVO to 1. This shows that the optimal joint policy of IPD requires only one role: the producer or the
cooperator. It can be seen from the figure that the ROMA algorithm based only on the division of labor
cannot stably converge to mutual cooperation. Both players choose the cooperate action and receive a −1
environmental reward. In the early stages of training, ROMA can learn to cooperate. Nevertheless, once a
player chooses the “defect” action, ROMA’s role learning will fix the player’s character, so she will always
choose the “defect” action and make mutual cooperation unsustainable.

The LToS and D3C algorithms based only on the SVO mechanism can converge to mutual cooperation
quickly, but this equilibrium also cannot be maintained for a long time. However, the reasons for the inability
of these two baselines to maintain mutual cooperation are not the same. The LToS algorithm is that because
the agent does not form a stable SVO, agent 1 no longer shares rewards with agent 2 from the middle of
training (Figure 6d), so that agent 2 begins to explore other strategies. Although the D3C algorithm forms
a stable SVO, the agent’s policy and SVO have no conditional dependence, causing the policy to diverge at
the end of the training. The LIO algorithm and the RESVO algorithm show the best results. However, LIO
still has performance fluctuations after a training period and cannot maintain stable mutual cooperation.
This suggests that the sanction-based approach does not sustain stable cooperation in IPD.

Moreover, an interesting phenomenon can be found in Figure 6(c-d), where RESVO and other SVO-
based baselines (i.e., LToS and D3C) learn two completely different SVOs to try to maintain cooperation.
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As seen from the figure, after RESVO converges to mutual cooperation, the agent no longer needs to
receive rewards, nor does it share rewards. However, agents trained by other baselines have always received
and shared rewards during the training process. This illustrates that while RESVO maintains cooperation
through individualism orientation, other baselines achieve the same result through martyrdom orientation,
where the coefficients in the transformation matrices are all negative7. Our analysis suggests that another
reason for the inability of LToS and D3C to maintain stable cooperation may be due to this martyrdom
orientation, an SVO that causes rewards to be passed between agents all the time. After policies converge to
the equilibrium of mutual cooperation, these rewards will become noise and cause instability in the training
process. In contrast, RESVO shifts from a cooperative orientation to an individualism orientation after the
policies reach equilibrium, thus making the equilibrium remain stable. Although LIO is not an SVO-based
method, the sanction mechanism also allows reward transmission between agents all the time, thus leading
to the same instability of the training process.

(a) (b)

(c) (d) (e)

Figure 7: (a) Steps per episode. (b) The average rank of the SVO-based role matrix. (c-e) The number of
levers each agent pulls of different algorithms in 3-Player Escape Room.

Next, we expand our study scenario into a more complex 3-player Escape Room. Figures 7 shows the
performance of RESVO and baselines in the 3-Player Escape Room with M = 2. This means that two
agents must pull the lever for the agent to open the door. Figures 7(b) shows the satisfaction of the rank
constraints of the RESVO algorithm during training. In the 3-player Escape Room, we set the rank constraint
of RESVO to 2. Specifically, we hope 2 roles emerge from the three agents through SVO, the lever-puller,
and the door-opener. As can be seen from the figure, as the training progresses, the rank constraint of the
RESVO algorithm can be well satisfied.

A simple analysis of this task shows that the optimal policy only requires each agent to perform one-step
action. This is because it only takes one timestep for any agent to move from the “initial” to the “lever” or
“gate”. At the same time, each move will bring a reward of −1, and a more than 1 move will be a social
welfare decline. The Figure 7(a) records the steps required by different algorithms to complete the task.
Since ROMA performs poorly on the most straightforward IPD task, we no longer show the performance of
ROMA on the more complex Escape Room and Cleanup tasks. It can be seen that RESVO can converge
to the optimal policy fastest. D3C and LIO take about 4 times as many samples to converge to equilibrium
compared to RESVO. LToS falls into a locally optimal solution early and cannot escape from it.

7In IPD, the external rewards of the agents are all negative, so only negative coefficients can deliver positive rewards.
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Figure 7(c-e) shows the division of labor of different agents in the 3-Player Escape Room with different
algorithms. It can be seen from these 3 figures that whether the division of labor is formed and whether
the division of labor is stable dramatically affects the performance and convergence speed of the algorithm.
RESVO has converged to a stable division of labor: agent 1 opens the door, and agents 2 and 3 pull the
lever. Therefore, RESVO can converge to equilibrium the fastest and maintain it compared with baselines.

For the D3C algorithm, agent 2 is stably assigned the role of a lever-puller, but there is no stable division
of labor between agent 1 and agent 3. The two oscillate between the roles of lever-puller and door-opener.
None of the three agents have their own fixed roles for the LIO algorithm. Moreover, comparing Figure 7(a)
and Figure 7(c-e), it can be seen that even after the LIO algorithm converges to equilibrium, the three agents
are still dynamically allocated between the two roles of lever-puller and door-opener. The instability of the
division of labor between D3C and LIO also affects their convergence speed, and LIO converges more slowly
than D3C. For the LToS, the three agents have been unable to form a correct division of labor, and the
average number of lever pulls greater than twice, indicating that the average number of the lever-puller is
less than 2. This will make an agent need to change from the “door-opener” to the “lever-puller” to complete
the task successfully. The role change process mentioned above makes the timestep of the LToS algorithm
to complete the task more significant than 1 on average.

Figure 8: Shared and received rewards of different algorithms 3-Player Escape Room.

In order to explore the reason why RESVO can form a stable division of labor, we show in Figure 8
how different agents share and receive rewards in different algorithms. That is, the emerged SVOs of three
SVO-based methods (including RESVO) and LIO. It is worth noting that in more complex Escape Room
and Cleanup environments, in order to make SVO have powerful representation capabilities, RESVO uses
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the transition matrix coefficients of multiple consecutive time steps as SVO. This differs from the setting
in our IPD experiments, making it impossible to classify the agent as a certain kind of SVO. Therefore, we
indirectly analyze the agent’s SVO from the pattern of sharing rewards in the following.

A counter-intuitive phenomenon can be seen in the figure. Those who pull the lever have no profit, and
those who open the door can obtain more significant benefits. Therefore, intuitively, to maintain a stable
division of labor, the door opener should share her reward with the lever-puller so both parties can get
rewards. At the same time, since each agent is self-motivated, this can form a stable role division. However,
the three SVO-based algorithms, RESVO, LToS, and D3C, share the rewards in turn. Those who pull the
levers give rewards to those who open the door. The difference between these three algorithms is the size
of the reward shared. A plausible explanation is that the SVO-based algorithm learned a more ”aggressive”
approach. The agent that discovers the action of pulling the lever gives the agent that discovers the action
of opening the door a positive reward so that the role of the door opener is fixed. Then determine the role of
the lever-puller. This method can instead promote the rapid formation of the division of labor and regional
stability for RESVO. The rank constraints in RESVO and the policy conditioned on SVO enable another role
can also be fixed once a role is fixed. Nevertheless, other SVO-based methods do not have this advantage, so
the algorithm converges slowly during the training process, and the division of labor cannot be maintained
stably. It can be seen from the figure that at the beginning of training, RESVO agents share a large-scale
reward value, thus promoting the algorithm to converge quickly. After the algorithm converges, similar to
the IPD task, the agent almost no longer shares and receives rewards, thus maintaining the stability of the
policies and division of labor.

The sanction-based LIO method exhibits a similar pattern to that in the IPD environment. During the
entire training process, even after the policies converges to equilibrium, the agents continue to transmit
large rewards, maintaining the stability of the division of labor through a high “cost” way. One defect of
this method is that the module that generates the sanction will always receive a large gradient during the
training process, which makes the optimization process unstable. The algorithm converges slowly and cannot
maintain a stable division of labor for a long time.

4.2 Role Emergence in the Cleanup

We finally test our method in Cleanup and start from a map size of 10 by 10 and the number of agents 2.
Although there are only 2 agents, it is still much more complicated than N -Players Escape Room because
Cleanup has far more timesteps per episode than the former. In this task, similar to the 3-Player Escape
Room, there is also an apparent division of labor between the two agents under the optimal cooperative policy:
one agent needs to clean up wastes (producer), and the other agent needs to collect apples (consumer). We
can judge the division of labor or roles of the two agents from the amount of waste they clean up.

As seen from Figure 9, different algorithms also show remarkable differences in the 2-agents Cleanup
task. On the one hand, LToS and D3C have not learned a good division of labor, and both agents hardly
clean up waste (Figure 9(c) and (f)), so no apples grow. This makes the extrinsic reward for both agents
small (Figure 9(b) and (e)), and the joint policy suffers from a public good dilemma. As can be seen from
Figure 9(a) and (d), the two agents hardly share rewards, and their SVOs are almost the same, which is why
LToS and D3C cannot learn a good division of labor or roles. On the other hand, RESVO and LIO have
successfully formed a reasonable division of labor. Agent 1 is responsible for collecting apples (consumer),
and agent 2 is responsible for cleaning up wastes (producer, see Figure 9(c) and (f)). At the same time, to
maintain a stable division of labor or roles, agent 1 as a consumer will continue to share rewards with agent
2 as a producer (Figure 9(a) and (d)), to achieve a larger average extrinsic reward, or the social welfare.
That is, agent 2 maintains a stable division of labor by showing a cooperative orientation to agent 1.

However, similar to the previous tasks, the sanction-based LIO method is very different from RESVO
in the way that roles emerge. The two algorithms exhibit different robustness in maintaining the division
of labor. As can be seen from Figure 9(d), on the one hand, for LIO, agent 2, which is the producer, also
needs to share the reward with agent 1. RESVO, on the other hand, uses a more ”energy-efficient” approach
to promoting role emergence: Since producers receive no rewards, there is no need to share rewards with
consumers who can receive large extrinsic rewards. This sparsity of reward sharing between agents also
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Shared and received rewards, extrinsic rewards, and waste cleared of different algorithms in 10×10
map size, 2-Player Cleanup.

enables RESVO to maintain a more stable division of labor while receiving greater social welfare. It can be
seen from Figure 9(c) that the agent 2 trained by the LIO algorithm does not always clean up the waste, and
its behavior shows a significant variance. This also makes the external reward of agent 1 unable to maintain
a high level all the time and also has a significant variance (Figure 9(e)).

4.3 Static versus Dynamic Division of Labor

In the three tasks in the previous two sections, we find that the sanction-based LIO can also effectively learn
a reasonable division of labor or roles. However, due to the difference between the sanction mechanism and
SVO, LIO needs to transmit rewards densely between agents, which makes it impossible to maintain a stable
division of labor. In other words, RESVO realizes a static division of labor through the emergence of SVO,
but LIO realizes a dynamic division of labor. In the static division of labor, the role of each agent is fixed
while completing the task; on the contrary, the agent’s role will change in the dynamic division of labor.

In addition, from the experiments in the previous two sections, we find preliminary evidence that static
division of labor can lead to better social welfare. Nevertheless, the above tasks only contain 2 − 3 agents,
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(a)

(b) (c)

Figure 10: The (a) boxplot, (b) histogram of performance, and the (c) influence of k value for extrinsic
rewards under 10 runs of different algorithms in 48× 18 map size, 10-Player Cleanup.

and the impact of dynamic division of labor cannot be fully reflected. For example, for the IPD or Cleanup
task that only consists of 2 agents, the dynamic division of labor is the role reversal of the two agents. To
this end, we compare the performance of the algorithms in a larger Cleanup environment with a map size of
48 by 18 and many agents of 10. There are only two roles in the Cleanup: the waste cleaner and the apple
picker. When the number of agents exceeds 2, multiple agents will have the same role. Cooperation among
roles and agents with the same role is required to get rid of the public good dilemma and achieve greater
social welfare. At this time, for the cooperation of the same role, the static role or division of labor has more
advantages. Because dynamic roles involve role changes, that is, the composition of group members with
the same role changes. This will make the cooperation of the same role unstable, affecting the algorithm’s
performance. The larger the number of agents, the more severe the problem of unstable cooperation will
become, which will also cause more significant performance degradation. To test the above hypothesis, we
conducted multiple random experiments in 10-player Cleanup to ensure the reliability of the results. As seen
from Figure 10, RESVO shows a clear performance advantage (about two times) compared to LIO in the
more complex Cleanup environment.
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Figure 10 verifies the impact of the dynamic division of labor in the task completion process of different
algorithms on performance. We also find that the dynamics of the division of labor are not only reflected in
the completion of one task but also in the completion of different tasks by recording the dynamics of labor
division of different algorithms under different random seeds. Specifically, for each random experiment, we
count the number of waste cleaned by each agent, similar to Figure 9(c) and (f). If the agent is cleaning
a low amount of waste (closer to 0), the counter for the agent’s role as a cleaner is incremented by one.
Otherwise, the picker counter is incremented by one. Figure 11 shows the average dynamic where 10 agents
are assigned the role of cleaning wastes by different algorithms under 10 random seeds. As seen from the
figure, in different random experiments, the SVO-based methods, LToS, D3C, and RESVO, all show better
static division of labor than the sanction-based LIO. However, LToS and D3C converge to a suboptimal
static division of labor. Most of the agents are assigned the role of collecting apples. Both LIO and RESVO
converge to a better division of labor. More agents choose to clean up waste, but the former maintains its
dynamics. Combined with the results of Figure 10, it can be seen that in tasks involving more complex
optimal division of labor patterns, the static division of labor learned by RESVO can be more efficient than
the dynamic division of labor in LIO.

To more intuitively demonstrate the policies learned by different algorithms in the 10-player Cleanup,
we selected keyframes from the rendered results, as shown in Figure 12 and 13. The arrow in the figure
indicates the reward sharing. The policies shown in the figure match the performance results and related
analysis presented earlier.

Figure 11: The role composition of different algorithms in 48×18 map size, 10-Player Cleanup. The numbers
in the color blocks represent the number of times in 10 experiments assigned to cleaning up wastes. The size
of the color block is proportional to the number.

4.4 SVO Emergence as a Plug-and-Play Module

As introduced in Introduction and Method, RESVO is based on the independence theory, which transforms
the learning of social value orientation, i.e., the learning of transformation matrix, into a symmetric learning
to share problem. In this way, the role representation of the agent is transformed from the transformation
matrix to the sharing coefficient matrix. To constrain the number of emergent roles, RESVO introduces a
novel rank constraint. At the same time, to make the agent’s behavior subject to role constraints, RESVO
introduces a conditional policy based on role representation and a mutual information constraint to accelerate
the learning of this augmented policy. The above core idea of RESVO shows that the rank constraint and
the conditional policy to satisfy the mutual information constraint are the two main modules of RESVO.
Both modules are common to other SVO-based methods. Therefore, we can naturally add them to the
SVO-based baselines, namely LToS and D3C, i.e., The SVO-based role emergence mechanism in RESVO
can be introduced into other SVO-based methods as a plug-and-play module.

The numerical experimental results of LToS and D3C with the addition of the rank constraint and the
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Figure 12: Selected keyframes from the rendered results of RESVO and D3C in the 10-player Cleanup.
Arrows indicate reward sharing.

conditional policy based on the mutual information constraint are shown in Figure 10(b). We conduct
different randomized experiments in the 10-player Cleanup environment under 10 different random seeds
and count the average extrinsic reward of the agents after the algorithm converges for each experiment. As
can be seen from the figure, both the LToS+r algorithm and the D3C+r algorithm show significant and
stable performance improvements.

4.5 The Impact of Rank Constraints

Finally, we perform an ablation analysis of rank constraints in RESVO. Intuitively, the number of roles,
or the pattern of division of labor, will primarily affect the completion of tasks. The rank constraint k
represents a priori knowledge of the optimal number of roles in the task. In IPD, 3-player Escape Room, and
Cleanup of different complexity, we set k, or the number of roles, to 1, 2, and 2, respectively. In this section,
we want to verify the sensitivity of RESVO to the hyperparameter k. Similarly, we conduct 10 randomized
experiments in the 10-player Cleanup environment for different k and count the average external reward of
the agents, and the results are shown in Figure 10(c).

It can be seen from the results in the figure that the RESVO algorithm is sensitive to the size of k.
When the selection of k is too large or too small, the performance will decrease significantly. The optimal
number of roles in the 10-player Cleanup environment should be 2. However, it can be seen from the figure
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Figure 13: Selected keyframes from the rendered results of LToS and LIO in the 10-player Cleanup. Arrows
indicate reward sharing.

that when k is set to 3 or 4, the algorithm can also show promising results, indicating that the RESVO
algorithm can show good robustness near the optimal k. We then present a more in-depth visual analysis of
the SVO-based embeddings of emergent roles, which more intuitively shows the robustness of the RESVO
algorithm around the optimal value of k.

Figure 14-17 show the SVO emergence in the training procedure of RESVO under different rank con-
straints in Cleanup with a map size of 48×18 and 10 agents. We visualize the SVO of each agent at the first
timestep of a particular episode. We randomly map the SVO embedding of each agent to a 2D space using a
fixed random neural network. This dimensionality reduction method can ensure that similar SVOs are also
close together in 2D space. As seen from Figure 14, when the rank constraint is very low, all agents learn
similar SVOs, that is, similar roles. This either means that all agents are free-riders or all agents have a
composite role that needs to both collect apples and clean up waste. In either case, the overall performance
will be poor.

When the size of the rank constraint is within a reasonable range, the algorithm can converge to the best
performance, as shown in Figures 15 and 16. In previous results, the algorithm can converge to a better
result when the rank constraint is near the optimal value (k = 2). Through the visualization results in
Figures 15 and 16, we can propose an explanation experimentally. It can be seen from the two figures that
although the agent is divided into more roles when k = 4, the similarity of these roles is different. Some
roles are more similar, and others are less similar. Therefore, in the Cleanup, when k = 4, some two roles
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Figure 14: SVO-based role emergence with the rank k = 1 constrain.

Ep
is

od
e 

0

Ep
is

od
e 

15
k

Ep
is

od
e 

40
k

Figure 15: SVO-based role emergence with the rank k = 2 constrain.

may show a similar division of labor, so the performance will not be affected when there are more roles.
However, when the rank constraint increases (k = 9), the situation worsens. As shown in Figure 17, when

the agent has too many roles, the SVO of the agent presents strong randomness, which makes the policy
of the agent constrained by the SVO also present greater randomness. In the Cleanup task, the number of
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Figure 16: SVO-based role emergence with the rank k = 4 constrain.
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Figure 17: SVO-based role emergence with the rank k = 9 constrain.

agents that collect apples or clean up wastes will be small, and some agents will follow random policies and
do useless work, which will not improve the algorithm’s performance.
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5 Closing Remarks

In this paper, we introduce a typical mechanism of human society, i.e., division of labor, to solve intertem-
poral social dilemmas (ISDs) in multi-agent reinforcement learning. A novel learning framework (RESVO)
transforms role learning into a social value orientation emergence problem. RESVO solves it symmetrically
by endowing agents with altruism to learn to share rewards with different weights with other agents. Nu-
merical experiments on three tasks with different complexity in the presence of ISD show that RESVO can
emerge stable roles and efficiently solve the ISD through the division of labor. Meanwhile, the SVO-based
role emergence mechanism in RESVO can be introduced into other SVO-based methods as a plug-and-play
module and bring a significant performance boost.

For the classic example, iterated prisoner’s dilemma, we provide formal analyses and numerical results
for the effect of social value orientation and division of labor in Appendix C. However, for more complex
ISDs, i.e., N -Player Escape Room and Cleanup, we only provide empirical results in Section. 4. We aim
to formally analyze the evolutionary dynamics of environmental behaviors, social value orientations, and
roles of ISDs. However, the environmental policies, roles, and sharing policies are interdependent, and it is
not easy to accurately account for the effect of the division of labor when considering environmental policy
updates. These challenges have perplexed the researchers for a long time (Hirsch et al., 2012; Gould et al.,
2016; Dong et al., 2021), and we believe that the solution to these questions is an essential and promising
direction for future work.

In experiments, we find that the sanction-based LIO, the SVO-based LToS, D3C, and our RESVO take
a completely different approach to maintain the division of labor. The former achieves a dynamic division of
labor by continuously passing rewards among the agents, while the latter achieves a static division of labor
by more sparse reward passing. In the IPD, 3-player Escape Room, and Cleanup tasks of varying complexity
involved in the experiments, we find that static division of labor exhibits better performance compared to
dynamic division of labor in tasks where the same role corresponds to multiple agents, such as the 3-player
Escape Room, and the 10-player Cleanup, converging faster to better social welfare.

However, in this paper, we obtain the above conclusions by the social welfare of the algorithm only in a
limited task. We believe the dynamic division of labor will be more advantageous than the static division of
labor in specific tasks and certain evaluation metrics. For example, dynamic division of labor may be more
robust in tasks that involve roles that change dynamically; furthermore, static division of labor may pose
fairness issues because some agents receive lower extrinsic rewards than others. We leave the above questions
for future exploration.
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A Implementation Details

Our method is built on the open-sourced codebase LIO (Yang et al., 2020), ROMA (Wang et al., 2020) and
Sequential Social Dilemma Games (SSDG) (Vinitsky et al., 2019). We test our method on two Cleanup
maps with different numbers of agents (i.e., 2 and 10), and the details of each map are shown in Table 1.

Table 1: Environmental settings for Cleanup with different numbers of agents.

Parameter n=2 n=10
Map Size 10× 10 48× 18
View Size 7 15
Max Steps 50 400
Apple Respawn Probability 0.3 0.15
Depletion Threshold 0.4 0.99
Restoration Threshold 0.0 0.0
Waste Spawn Probability 0.5 0.15

We use fully-connected neural and convolutional networks for function approximation in the [IPD, ER]
and Cleanup, respectively. All algorithms use the same neural architecture without sharing parameters within
each intertemporal social dilemma. The output of each agent’s orientation function is scaled element-wise by
a multiplier wmax, which is bounded in [−wmax, wmax]. The multiplier wmax is set to [3, 2, 2] for [IPD, ER,
Cleanup], respectively. We use a policy gradient algorithm to train the policy in IPD, ER, and actor-critic
for Cleanup. An exploration lower bound ε is used to perform sufficient exploration, with ε decaying linearly
from εstart to εend by εdiv episodes. The values of these hyperparameters in different tasks are consistent
with LIO (Yang et al., 2020). We use discount factor γ = 0.99, the gradient descent for policy optimization,
and the Adam (Kingma and Ba, 2015) optimizer for training value and orientation functions.

For the trajectory encoder, we build the causal transformer (Chen et al., 2021) implementation for
Cleanup off of minGPT8, a publicly available reimplementation of GPT. We use most of the hyperpa-
rameters from Decision Transformer Chen et al. (2021)9. Moreover, for Iterated Prisoner’s Dilemma and
N -Player Escape Room, our code is based on the Huggingface Transformers library (Wolf et al., 2020). Our
hyperparameters on these tasks are also the same with Chen et al. (2021).

We compare our method against various baselines. For ROMA (Wang et al., 2020), LIO (Yang et al.,
2020), LToS (Yi et al., 2021), and D3C (Gemp et al., 2022), we use the codes provided by the authors and
the hyper-parameters that have been fine-tuned on the Sequential Social Dilemma Games (SSDG) (Vinitsky
et al., 2019). The ablations LToS+r and D3C+r use the exact implementation and hyperparameter settings
as LToS and D3C, respectively, but with the only difference that the role emergence mechanism is introduced,
which is the same as in our method. Learning curves are smoothed by averaging over a window of 11 episodes.
The hardware used in the experiment is a server with 128G memory and 4 NVIDIA 1080Ti graphics cards
with 11G video memory. The code and license of baselines are shown in the following list:

• ROMA (Wang et al., 2020): https://github.com/TonghanWang/ROMA, Apache-2.0 License;

• LIO (Yang et al., 2020): https://github.com/011235813/lio, MIT License;

• SSDG (Vinitsky et al., 2019): https://github.com/eugenevinitsky/sequential_social_dilemma_
games, MIT License.

8https://github.com/karpathy/minGPT.
9https://github.com/kzl/decision-transformer, MIT License.
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B Derivations

B.1 Role Emergence

Here we deduce the (4) in detail. For logical integrity, we have merged and reorganized some of the contents
of Section 3.1 and Section 3.2. At each time step t, each agent j receives a total reward

rj(η, r) := wjηj [j] · rj +
∑
i6=j

wiηi [j] · ri, (9)

Each agent j learns a SVO-based role conditioned policy πj(· | oj , ej(η)) parameterized by θj , where ej(·) is
the SVO-based role embedding, to maximize the objective

max
θj

Jpolicy(θj , {ej}) := Eπ(·|·,{ej})

[
T∑
t=0

γtrtj(η, r)

]
. (10)

Upon experiencing trajectories τ := {
(
s0,a0, r0, . . . , sT

)
}, the recipient carries out an update

θ̂j ← θj + βf (τ , θj , η) . (11)

that adjusts its policy parameters with learning rate β. Assuming policy optimization learners in this work
and choosing policy gradient for exposition, the update function is

f (τ , θj , η) =

T∑
t=0

∇θj log πj
(
atj | otj , etj(η)

)
Gtj (τ ;η) , (12)

where the return Gtj (τ ,η) =
∑T
l=t γ

l−trj (η, rl) depends on orientation parameters η. After each agent has

updated its policy to π̂j , parameterized by new θ̂j , it generates a new trajectory τ̂j . Using these trajectories,
each sharing agent i updates shared orientation function parameters ηi to maximize the following individual
objective:

max
ηi

J svo
i

(
τ̂i, θ̂,η, ηi

)
:= Eπ̂

[
T∑
t=0

γt
(
r̂ti − α‖W i,t

ηi −W
i,t
k ‖

2
2

)]
, (13)

where the superscription i denotes the i-th column of the matrix W i,t
ηi . The penalty term introduced

by the rank constraint can be regarded as an intrinsic reward −α‖W i,t
η − W i,t

k ‖22. And the gradient of

J svo
i

(
τ̂i, θ̂,η, ηi

)
w.r.t. ηi is:

∇ηiJ svo
i

(
τ̂i, θ̂,η, ηi

)
=∇ηi θ̂∇θ̂J

svo
i

(
τ̂ i, θ̂,η, ηi

)
+∇ηiη∇ηJ svo

i

(
τ̂i, θ̂,η, ηi

)
+∇ηiJ svo

i

(
τ̂i, θ̂,η, ηi

)
=

N∑
j=1

(∇ηi θ̂j)T∇θ̂jJ
svo
i

(
τ̂i, θ̂,η, ηi

)
︸ ︷︷ ︸

blue part

+ (∇ηiη)T∇ηJ svo
i

(
τ̂i, θ̂,η, ηi

)
︸ ︷︷ ︸

orange part

+

∇ηiJ svo
i

(
τ̂i, θ̂,η, ηi

)
︸ ︷︷ ︸

purple part

.

(14)

The first factor of each term in the summation of the blue part follows directly from (11) and (12):

∇ηi θ̂j = β

T∑
t=0

∇ηi∇θj log πj
(
atj | otj , ej(η)

)
Gtj (τ ;η) +

∇θj log πj
(
atj | otj , ej(η)

) (
∇ηiGtj (τ ;η)

)T
.

(15)
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Note that (11) does not contain recursive dependence of θj on η since θj is a function of incentives in previous
episodes and orientation parameters, not those in trajectory τi and current η. The second factor of the blue
part can be derived similarly as standard policy gradients (Sutton et al., 1999):

∇θ̂jJ
svo
i

(
τ̂i, θ̂,η, ηi

)
= ∇θ̂j Ṽ

π̂
i (ŝ0, ηi) = ∇θ̂j

∑
â

π̂ (â | ŝ0, ê(η)) Q̃π̂i (ŝ0, â, ηi)

=
∑
â

π̂−j
θ̂−j

((
∇θ̂j π̂

j

θ̂j

)
Q̃π̂i (ŝ0, â, ηi) + π̂j

θ̂j
∇θ̂j Q̃

π̂
i (ŝ0, â, ηi)

)
=
∑
â

π̂−j
θ̂−j

((
∇θ̂j π̂

j

θ̂j

)
Q̃π̂i (ŝ0, â, ηi) + π̂j

θ̂j
∇θ̂j

(
r̂i + γ

∑
ŝ′

P (ŝ′ | ŝ0, â) Ṽ πi (ŝ′, ηi)

))

=
∑
â

π̂−j
θ̂−j

((
∇θ̂j π̂

j

θ̂j

)
Q̃π̂i (ŝ0, â, ηi) + γπ̂j

θ̂j

∑
ŝ′

P (ŝ′ | ŝ0, â)∇θ̂j Ṽ
π
i (ŝ′, ηi)

)

=
∑
x

T∑
k=0

P (ŝ0 → x, k, π̂) γk
∑
â

π̂−j
θ̂−j
∇θ̂j π̂

j

θ̂j
Q̃π̂i (x, â, ηi)

=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂−j
θ̂−j
∇θ̂j π̂

j

θ̂j
Q̃π̂i (ŝ, â, ηi)

=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂−j
θ̂−j

π̂j
θ̂j
∇θ̂j log π̂j

θ̂j
Q̃π̂i (ŝ, â, ηi)

=Eπ̂
[
∇θ̂j log π̂j

θ̂j
(âj | ôj , êj(η)) Q̃i,π̂(ŝ, â, ηi)

]
,

(16)

where Q̃π̂i (ŝ, â,η) represents the Q-function of the augmented reward which is augmented by the intrinsic

reward −α‖W i,t
ηi −W

i,t
k ‖22, π̂−j

θ̂−j
:= π̂−j

θ̂−j
(â−j | ŝ0, ê−j(η)), π̂j

θ̂j
:= π̂j

θ̂j
(âj | ŝ0, êj(η)). Similar to the derivation

of the second factor of the blue part, the second factor of the orange part can be derived as

∇ηJ svo
i

(
τ̂i, θ̂,η, ηi

)
= ∇ηṼ π̂i (ŝ0, ηi) = ∇η

∑
â

π̂ (â | ŝ0, ê(η)) Q̃π̂i (ŝ0, â, ηi)

=
∑
â

((
∇ηπ̂θ̂

)
Q̃π̂i (ŝ0, â, ηi) + π̂θ̂∇ηQ̃

π̂
i (ŝ0, â, ηi)

)
=
∑
â

((
∇ηπ̂θ̂

)
Q̃π̂i (ŝ0, â, ηi) + π̂θ̂∇η

(
r̂i + γ

∑
ŝ′

P (ŝ′ | ŝ0, â) Ṽ πi (ŝ′, ηi)

))

=
∑
â

((
∇ηπ̂θ̂

)
Q̃π̂i (ŝ0, â, ηi) + γπ̂θ̂

∑
ŝ′

P (ŝ′ | ŝ0, â)∇ηṼ πi (ŝ′, ηi)

)

=
∑
x

T∑
k=0

P (ŝ0 → x, k, π̂) γk
∑
â

∇ηπ̂θ̂Q̃
π̂
i (x, â, ηi)

=
∑
ŝ

dπ̂(ŝ)
∑
â

∇ηπ̂θ̂Q̃
π̂
i (ŝ, â, ηi)

=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂θ̂∇η log π̂θ̂Q̃
π̂
i (ŝ, â, ηi)

=Eπ̂

 N∑
j=1

∇η log π̂j
θ̂j

(âj | ôj , êj(η))

 Q̃i,π̂(ŝ, â, ηi)

 .

(17)

32



Finally, the purple part can be directly derived as

∇ηiJ svo
i

(
τ̂i, θ̂,η, ηi

)
= Eπ̂

[
T∑
t=0

−2αγt∇ηiW i,t
ηi

(
W i,t
ηi −W

i,t
k

)]
. (18)

B.2 Policy Optimization

Introducing SVO-based role embedding and conditioning individual policies on this embedding explicitly
establish the connection between the role and the individual policies to encourage the division of labor
through the diversity of roles. Nevertheless, this does not enable the role representation to exhibit sufficient
responsibilities. That is, the role can constrain the long-term behavior of the agent. Drawing inspiration
from Eysenbach et al. (2019); Wang et al. (2020), we propose to learn SVO-based roles that are identifiable
by agents’ long-term behaviors, which can be achieved by maximizing I(τi; ei | o,a), the conditional mutual
information between the individual trajectory and the role given the current joint observation and joint
action.

Based on variational inference and the derivation process in Wang et al. (2020), a variational posterior
estimator can be proposed to derive a tractable lower bound for the mutual information objective

I
(
eti; τ

t−1
i | ot,at

)
= Eeti,τt−1

i ,ot,at

[
log

p
(
ρti | τ

t−1
i ,ot,at

)
p (eti | ot,at)

]

= Eeti,τt−1
i ,ot,at

[
log

qφ
(
eti | τ

t−1
i ,ot,at

)
p (eti | ot,at)

]
+ Eτt−1

i ,ot,at

[
DKL

(
p
(
eti | τ t−1i ,ot,at

)
‖qφ

(
eti | τ t−1i ,ot,at

))]
≥ Eeti,τt−1

i ,ot,at

[
log

qφ
(
eti | τ

t−1
i ,ot,at

)
p (eti | ot,at)

]
,

(19)

where the last inequality holds via non-negativity of the KL divergence. Then it follows that:

Eeti,τt−1
i ,ot,at

[
log

qφ
(
eti | τ

t−1
i ,ot,at

)
p (eti | ot,at)

]
=Eeti,τt−1

i ,ot,at

[
log qφ

(
eti | τ t−1i ,ot,at

)]
− Eeti,ot,at

[
log p

(
eti | ot,at

)]
=Eeti,τt−1

i ,ot,at

[
log qφ

(
eti | τ t−1i ,ot,at

)]
+ Eot,at

[
H
(
eti | ot,at

)]
=Eτt−1

i ,ot,at

[∫
p
(
eti | τ t−1i ,ot,at

)
log qφ

(
eti | τ t−1i ,ot,at

)
deti

]
+ Eot,at

[
H
(
eti | ot,at

)]
.

(20)

The role encoder is conditioned on the joint observations and actions, so given the observations and actions,
the distributions of roles, p (eti), are independent from the local histories. Thus, we have

I
(
eti; τ

t−1
i | ot,at

)
≥ −Eτt−1

i ,ot,at

[
CE
[
p
(
eti | ot,at

)
‖qφ

(
eti | τ t−1i ,ot,at

)]]
+ Eot,at

[
H
(
eti | ot,at

)]
.

(21)

In SVO-based role emergence, we use orientation functions to act as the role encoder. Therefore, the above
formula can be transformed into

I
(
eti; τ

t−1
i | ot,at

)
≥ −Eτt−1

i ,ot,at

[
CE
[
Wη

(
eti | ot,at

)
‖qφ

(
eti | τ t−1i ,ot,at

)]]
+ Eot,at

[
Hη
(
eti | ot,at

)]
.

(22)
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In practice, we use a replay buffer D and minimize the following summation of all agents

Lmi (τ ;η, φ) =
1

n

N∑
i=1

Lmi
i (τi;η, φ)

:=E(τt−1
i ,ot,at)∼D

[
CE
[
Wη

(
eti | ot,at

)
‖qφ

(
eti | τ t−1i ,ot,at

)]
−Hη

(
eti | ot,at

)]
=E

[
DKL

[
Wη

(
eti | ot,at

)
‖qφ

(
eti | τ t−1i ,ot,at

)]]
,

(23)

In addition, in the implementation, the orientation functions model p as a normal distribution and output
the mean and variance of the SVO-based role embedding, which can be sampled from the corresponding
normal distribution. However, in the training process of role emergence, we only use the mean of the output
of orientation functions.

B.3 Practice Implementation

From the derivation of (14), it can be seen that the gradient calculation involves the calculation of multi-
part partial derivatives and complex matrix-vector multiplication. Alternatively, one may rely on automatic
differentiation in modern machine learning frameworks (Abadi et al., 2016) to compute the chain rule (14)
via direct minimization of a loss function. This loss function is derived as follows:

∇ηiJ svo
i

(
τ̂i, θ̂,η, ηi

)
= ∇ηi Ṽ π̂i (ŝ0, ηi) = ∇ηi

∑
â

π̂ (â | ŝ0, ê(η)) Q̃π̂i (ŝ0, â, ηi)

=
∑
â

((
∇ηiπ̂θ̂

)
Q̃π̂i (ŝ0, â, ηi) + π̂θ̂∇ηiQ̃

π̂
i (ŝ0, â, ηi)

)
=
∑
â

((
∇ηiπ̂θ̂

)
Q̃π̂i (ŝ0, â, ηi) + π̂θ̂∇ηi (r̂i−

α‖W i
ηi −W

i
k‖22 + γ

∑
ŝ′

P (ŝ′ | ŝ0, â) Ṽ πi (ŝ′, ηi)

))
=
∑
â

((
∇ηiπ̂θ̂

)
Q̃π̂i (ŝ0, â, ηi)− 2π̂θ̂α∇ηiW

i
ηi

(
W i
ηi −W

i
k

)
+

γπ̂θ̂

∑
ŝ′

P (ŝ′ | ŝ0, â)∇ηi Ṽ πi (ŝ′, ηi)

)

=
∑
x

T∑
k=0

P (ŝ0 → x, k, π̂) γk
∑
â

(
∇ηiπ̂θ̂Q̃

π̂
i (x, â, ηi)− 2π̂θ̂α∇ηiW

i
ηi

(
W i
ηi −W

i
k

))
=
∑
ŝ

dπ̂(ŝ)
∑
â

(
∇ηiπ̂θ̂Q̃

π̂
i (ŝ, â, ηi)− 2π̂θ̂α∇ηiW

i
ηi

(
W i
ηi −W

i
k

))
=
∑
ŝ

dπ̂(ŝ)
∑
â

π̂θ̂

(
∇ηi log π̂θ̂Q̃

π̂
i (ŝ, â, ηi)− 2α∇ηiW i

ηi

(
W i
ηi −W

i
k

))

=Eπ̂

 N∑
j=1

∇η log π̂j
θ̂j

(âj | ôj , êj(η))

 Q̃i,π̂(ŝ, â, ηi)− 2α∇ηiW i
ηi

(
W i
ηi −W

i
k

) .

(24)

Hence descending a stochastic estimate of this gradient is equivalent to minimizing the following loss:

−
T∑
t=0

N∑
j=1

log πj
θ̂j

(
âtj | ôtj , êtj(η)

) T∑
`=t

γ`−t
(
r̂`i − α‖∆i,`(W,k)‖22

)
− 2α∇ηiW i,t

ηi ∆i,t(W,k), (25)

where ∆i,`(W,k) := W i,`
ηi −W

i,`
k and ∆i,t(W,k) := W i,t

ηi −W
i,t
k .
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C Analysis in Iterated Prisoner’s Dilemma

Table 2: Prisoner’s Dilemma.

A1/A2 C D
C (−1,−1) (−3, 0)
D (0,−3) (−2,−2)

Similar to Yang et al. (2020), we conduct a complete analysis (Appendix C) using closed-form gradient
descent without policy gradient approximation in repeated matrix games. In the stateless Iterated Prisoner’s
Dilemma (IPD), for example, with payoff matrix in Table 2. Figure 18 shows the vector field of the two
agents’ cooperation probabilities after setting the probability of the two agents taking a cooperative action at
0.5 and updating the policy using RESVO. As can be seen from the figure, RESVO can converge to mutual
cooperation.

PropositionifnotemptyProposition upn1 RESVO converges to mutual cooperation in the Iterated Prisoner’s
Dilemma.
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(a) 1-th round update.
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(b) 2-th round update.
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(c) k-th round update.

Figure 18: Vector fields of the cooperation probability of each agent at the different rounds.

Proof. We prove this by deriving closed-form expressions for the updates to parameters of policies and
incentive functions. Let θi for i ∈ {1, 2} denote each agent’s probability of taking the cooperative action.
Let w1 :=

[
w11, w12

]
, w11 :=

[
w11
C , w

11
D

]
∈ R2 and w12 :=

[
w12
C , w

12
D

]
∈ R2 denote agent 1’s orientation

function, where the ratios are given to itself and agent 2 respectively when agent 2 takes action a2 = C or
a2 = D. Similarly, let w1, w21 and w22 denote agent 2’s orientation function. The value function for each
agent is defined by

Vi (θ1, θ2) =

T∑
t=0

γtpT ri ≈
1

1− γ
pT ri,

where p = [θ1θ2, θ1 (1− θ2) , (1− θ1) θ2, (1− θ1) (1− θ2)] .

(26)

The total reward received by each agent is

r1 =
[
−w11

C − w21
C ,−3w11

D + 0, 0− 3w21
D ,−2w11

D − 2w21
D

]
,

r2 =
[
−w22

C − w12
C , 0− 3w12

D ,−3w22
D + 0,−2w22

D − 2w12
D

]
.

(27)
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Agent 2 updates its policy via the update

θ̂2 =θ2 + ζ∇θ2V2
(
θ1, θ2

)
=θ2 +

ζ

1− γ
∇θ2

(
θ1θ2

(
−w22

C − w12
C

)
− θ1 (1− θ2) 3w12

D

− (1− θ1) θ23w22
D + (1− θ1) (1− θ2)

(
−2w22

D − 2w12
D

))
=θ2 +

ζ

1− γ
∇θ2

[(
w12
D + w22

D − w12
C − w22

C

)
θ1θ2 +

(
2w22

D − w12
D

)
θ1+(

2w12
D − w22

D

)
θ2 − 2

(
w12
D + w22

D

)]
=θ2 +

ζ

1− γ
[(

3w22
D − w12

C − w22
C

)
θ1 − 2

(
w12
D + w22

D

)]
.

(28)

And likewise, for agent 1:

θ̂1 =θ1 + ζ∇θ1V1
(
θ1, θ2

)
=θ1 +

ζ

1− γ
∇θ1

(
θ1θ2

(
−w11

C − w21
C

)
− θ1 (1− θ2) 3w11

D

− (1− θ1) θ23w21
D + (1− θ1) (1− θ2)

(
−2w11

D − 2w21
D

))
=θ1 +

ζ

1− γ
∇θ1

[(
w11
D + w21

D − w11
C − w21

C

)
θ1θ2 +

(
2w21

D − w11
D

)
θ1+(

2w11
D − w21

D

)
θ2 − 2

(
w11
D + w21

D

)]
=θ1 +

ζ

1− γ
[(

3w11
D − w11

C − w21
C

)
θ2 − 2

(
w11
D + w21

D

)]
.

(29)

Let p̂ denote the joint action probability under updated policies θ̂1 and θ̂2, let ∆2 :=
[(

3w22
D − w12

C − w22
C

)
θ1 − 2

(
w12
D + w22

D

)]
ζ/(1−

γ) denote agent 2’s policy update and let ∆1 :=
[(

3w11
D − w11

C − w21
C

)
θ2 − 2

(
w11
D + w21

D

)]
ζ/(1 − γ) denote

agent 1’s policy update. Agent 1 updates its orientation function parameters via

w1 ← w1 + β∇w1

1

1− γ
p̂T renv1

=w1 +
β

1− γ
∇w1 [− (θ1 + ∆1) (θ2 + ∆2)− 3 (θ1 + ∆1) (1− θ2 −∆2)

−2 (1− θ1 −∆1) (1− θ2 −∆2)]

=w1 +
β

1− γ
∇w1 [5θ1 −∆1 − 2 + 2θ2 + 2∆2]

=w1 +
β

1− γ


∇w11

C
(−∆1)

∇w12
C

(2∆2)

∇w11
D

(−∆1)

∇w12
D

(2∆2)

 = w1 +
β

1− γ


ζ

1−γ θ2

− 2ζ
1−γ θ1

− ζ
1−γ (3θ2 − 2)

− 4ζ
1−γ



=w1 +
ζβ

(1− γ)2


θ2
−2θ1
−(3θ2 − 2)
−4

 .

(30)
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By symmetry, agent 2 updates its orientation function parameters via

w2 ← w2 + β∇w2

1

1− γ
p̂T renv2

=w2 +
β

1− γ
∇w2 [− (θ1 + ∆1) (θ2 + ∆2)− 3 (1− θ1 −∆1) (θ2 + ∆2)

−2 (1− θ1 −∆1) (1− θ2 −∆2)]

=w2 +
β

1− γ
∇w2 [−θ2 −∆2 − 2 + 2θ1 + 2∆1]

=w2 +
β

1− γ


∇w21

C
(2∆1)

∇w22
C

(−∆2)

∇w21
D

(2∆1)

∇w22
D

(−∆2)

 = w2 +
β

1− γ


− 2ζ

1−γ θ2
ζ

1−γ θ1

− 4ζ
1−γ
− ζ

1−γ (3θ1 − 2)



=w2 +
ζβ

(1− γ)2


−2θ2
θ1
−4
−(3θ1 − 2)

 .

(31)

It can be seen from (30) and (31) that in the Prisoner’s Dilemma shown in Table 2, except for w11
C and

w22
C , which are constantly increasing, other terms are constantly decreasing. This ensures that θ1 and θ2 in

(28) and (29) will eventually continue to increase, that is, the two agents converge to mutual cooperation.
Of course, in the above derivation, we ignore the low-rank and mutual information constraints on w1 and
w2. We believe that as long as the parameters are adjusted reasonably so that the direction of w1, w2 update
is consistent with the above derivation process, the algorithm can be guaranteed to converge to mutual
cooperation.

Below we visualize the updating direction of each parameter in the form of the vector field. We initialize
θ1 = 0.5, θ2 = 0.5, w1 = [1, 0, 1, 0], w2 = [0, 1, 0, 1]. After fixing the values of θ1, θ2, the change of the
orientation parameters of each agent is shown in Figure 19.

From Figure 19., we can see that different parameters update at different speeds. According to the speed
of parameters change in Figure 19., we update w1 : [1, 0, 1, 0] → [1.1,−0.2, 1.1,−1] and w2 : [0, 1, 0, 1] →
[−0.2, 1.1,−1, 1.1]. Correspondingly, we show the vector fields of θ1 and θ2 before and after the orientation
parameters update are shown in Figure 20.

It can be seen from Figure 20 that after a round of parameter updates, the policies of the two agents change
from mutual defection to mutual cooperation. As the agent orientation parameters and the cooperation prob-
abilities continue to change (Figure 21: θ1 [0.5 → 0.6], θ2 [0.5 → 0.6]; Figure 22: w1 [1.1,−0.2, 1.1,−1] →
[1.5,−1, 1.2,−3], w2 [−0.2, 1.1,−1, 1.1] → [−1, 1.5,−3, 1.2]; Figure 23: θ1 [0.6 → 0.8], θ2 [0.6 → 0.8]; Fig-
ure 24: w1 [1.5,−1, 1.2,−3]→ [4,−4, 0.5,−10], w2 [−1, 1.5,−3, 1.2]→ [−4, 4,−10, 0.5]), we can see that the
agents eventually converge to stable mutual cooperation.
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Figure 19: Vector fields of orientation parameters of each agent with θ1 = 0.5, θ2 = 0.5.
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Figure 20: Vector fields of the probability of cooperation of each agent before and after the orientation
parameters update w1 : [1, 0, 1, 0]→ [1.1,−0.2, 1.1,−1], w2 : [0, 1, 0, 1]→ [−0.2, 1.1,−1, 1.1].
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Figure 21: Vector fields of orientation parameters of each agent with θ1 = 0.6, θ2 = 0.6.
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Figure 22: Vector fields of the probability of cooperation of each agent before and after the orientation
parameters update w1 : [1.1,−0.2, 1.1,−1]→ [1.5,−1, 1.2,−3], w2 : [−0.2, 1.1,−1, 1.1]→ [−1, 1.5,−3, 1.2].
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Figure 23: Vector fields of orientation parameters of each agent with θ1 = 0.8, θ2 = 0.8.
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(a) Before the orientation parameters update.
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Figure 24: Vector fields of the probability of cooperation of each agent before and after the orientation
parameters update w1 : [1.5,−1, 1.2,−3]→ [4,−4, 0.5,−10], w2 : [−1, 1.5,−3, 1.2]→ [−4, 4,−10, 0.5].
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