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Abstract

The difficulty of appropriately assigning credit is particularly heightened in cooperative
MARL with sparse reward, due to the concurrent time and structural scales involved.
Automatic subgoal generation (ASG) has recently emerged as a viable MARL approach
inspired by utilizing sub-goals in intrinsically motivated reinforcement learning. However,
end-to-end learning of complex task planning from sparse rewards without prior knowledge,
undoubtedly requires massive training samples. Moreover, the diversity-promoting nature
of existing ASG methods can lead to the “over-representation” of sub-goals, generating
numerous spurious sub-goals of limited relevance to the actual task reward and thus
decreasing the sample efficiency of the algorithm. To address this problem and inspired
by the disentangled representation learning, we propose a novel “disentangled” decision-
making method, Semantically Aligned task decomposition in MARL (SAMA), that
prompts pretrained language models with chain-of-thought that can suggest potential
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goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-
based replanning. Additionally, SAMA incorporates language-grounded RL to train each
agent’s subgoal-conditioned policy. SAMA demonstrates considerable advantages in sample
efficiency compared to state-of-the-art ASG methods, as evidenced by its performance on
two challenging sparse-reward tasks, Overcooked and MiniRTS.

1. Introduction

The challenge of credit assignment is notably exacerbated in cooperative multi-agent reinforce-
ment learning (MARL) with sparse-reward compared to the single-agent context (Hernandez-
Leal et al., 2019; Zhou et al., 2020; Li et al., 2022a). This issue arises not only on temporal
scales, as observed in assigning sparse credits within a trajectory, but also in structural scales,
regarding credit assignment among agents (Agogino and Tumer, 2004). Value decomposition
serves as the primary paradigm for addressing structural credit assignment (Devlin et al.,
2014; Nguyen et al., 2018; Foerster et al., 2018; Sunehag et al., 2018; Rashid et al., 2020b; Son
et al., 2019; Rashid et al., 2020a; Wang et al., 2021a; Böhmer et al., 2020; Kang et al., 2022).
Consequently, most studies tackling temporal and structural credit assignment problems
follow the “value decomposition+x” framework.

In directly learning of assigning credits along a trajectory in sparse environments, the
primary challenge lies in the inherent difficulty each agent faces while attempting to acquire
a substantial number of beneficial trajectories through random exploration (Mesnard et al.,
2021). One prevalent example of “x” involves efficient exploration, which shows efficacy in
task selection (Mahajan et al., 2019; Yang et al., 2020b; Zheng et al., 2021; Li et al., 2021a;
Zhang et al., 2021; Gupta et al., 2021). Nevertheless, solely employing exploration still falls
short of ascertaining which actions yield rare non-zero rewards (Jeon et al., 2022; Hao et al.,
2023). Subgoal-based methodologies have recently emerged as a viable alternative inspired
by approaches utilizing sub-goals in single-agent RL (Kulkarni et al., 2016; Bellemare et al.,
2016; Pathak et al., 2017; Burda et al., 2019; Ecoffet et al., 2021; Guo et al., 2022) (also
referred to as intrinsically motivated RL (Colas et al., 2022a)). Intuitively, these methods
decompose a task into a series of goals while concurrently breaking down each goal into
sub-goals that require completion by agents. Both time and structural scales could receive
dense and goal-directed rewards, which mitigats the credit assignment dilemma.

While promising, four primary problems must be addressed within subgoal-based MARL:
a) sequential goal generation; b) rational decomposition of goals into sub-goals; c) accurate
subgoal allocation to agents; and d) agents’ efficient achievement of sub-goals. Early
solutions for the above issues primarily rely on artificially predefined rules (Becht et al., 1999;
Lhaksmana et al., 2018; Min et al., 2018; Grote et al., 2020), which limits their dynamism
and adaptability in new environments. Consequently, automatic subgoal generation (ASG)
serves as a more practical implementation of “x”, permitting application to various tasks
without relying on domain knowledge.

Predominant ASG methods typically encapsulate solutions for the four identified problems
within a two-stage, end-to-end learning procedure. Initially, sub-goals for each agent’s
completion are generated, followed by the learning of policies that facilitate the attainment
of these sub-goals. These approaches can be broadly classified into two categories depending
on the representation of sub-goals. Some methods employ embeddings for encoding sub-goals,

2



"delivering
the onion

soup to the
counter"

   
 G

oa
l G

en
er

at
io

n 
   "one chef takes a

plate from the dining
cabinet and transports

it to the bar"

"one chef transports a
plate from the shared

bar to the
crafting table"G

oa
l D

ec
om

po
si

tio
n

Su
bg

oa
l A

ss
ig

nm
en

t

L
a
n
g
u
a
g
e
-
G
r
o
u
n
d
e
d

R
L
 
A
g
e
n
t

?

FailedReflected Goal
Decomposition

"one chef takes a
plate from the dining
cabinet and transports

it to the bar"

"one chef goes to the
bar and waits"

L
a
n
g
u
a
g
e
-
G
r
o
u
n
d
e
d

R
L
 
A
g
e
n
t

Su
bg

oa
l A

ss
ig

nm
en

t
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Figure 1: SAMA’s proficiency progression and experimental trials on the Forced Co-
ordination within Overcooked. SAMA necessitates merely approximately 10% of the
training instances to approach the SOTA performance. In executing the task, SAMA ini-
tially prompts the PLM to generate goals, decompose the goal to sub-goals, and apportion
sub-goals based on the individual agent’s status, semantically aligned. Next, the cultivated
language-grounded RL policy adheres to the designated sub-goals and engages with the
environment. In the event of unsuccessful sub-objective execution, SAMA prompts the PLM
again to re-strategize, drawing upon the self-reflection mechanism.

allowing their generation to be based on local observations (Wang et al., 2020, 2021b), local
message-passing (Li et al., 2021b; Shao et al., 2022), or selection from a pre-generated subgoal
set using global information (Yang et al., 2022a). Subsequently, goal-conditioned policies
are learned through standard reward maximization. In contrast, other techniques implicitly
transform sub-goals into intrinsic rewards, optimizing policies for subgoal completion by
maximizing the shaped reward (Phan et al., 2021; Jeon et al., 2022; Nguyen et al., 2022;
Yang et al., 2022b; Li et al., 2023a).

Nevertheless, the end-to-end learning of complex task planning (a–d), with sparse
rewards and without a priori knowledge, undoubtedly necessitates massive training samples.
Furthermore, existing ASG methods often incorporate representation learning techniques
promoting diversity to learn effective subgoal embeddings or intrinsic rewards. Given the
rich sources of novelty in complex environments (Burda et al., 2019), this may result in
the “over-representation” of sub-goals, generating numerous redundant sub-goals of limited
relevance to the task reward and decreasing the algorithm’s sample efficiency. Contrarily,
humans do not uniformly explore goal spaces; instead, they rely on commonsense to generate
plausibly functional goals (Du et al., 2023). Take the Overcooked (Carroll et al., 2019) as
an example, humans immediately deduce that ingredient preparation must precede cooking,
while utilizing utensils is necessary for food handling prior to serving.

In the realm of disentangled representation learning (DRL), the process exists to isolate
the underlying factors of variation into variables with semantic significance. It leads
to the acquisition of representations that mimic the comprehension process of humans
grounded in commonsense (Bengio et al., 2013; Wang et al., 2022b). As a semantically
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aligned learning scheme, DRL has evinced its efficacy in enhancing model effectiveness,
explainability, controllability, robustness, and generalization capacity, all of which are
indispensable for general decision-making. In contrast to DRL, which necessitates the
learning of semantically aligned and disjointed representations, we switch from the “value
decomposition+x” framework, and proffer an approach to disentangled decision-making.
The proposed method leverages pre-trained language models (PLMs) as a trove of priors and
commonsense for the automatic generation of semantically aligned and disjointed sub-goals
in cooperative MARL with sparse reward. As probabilistic models trained on extensive
open-world text corpora, PLMs encapsulate rich data on human knowledge (Bommasani
et al., 2021; Yang et al., 2023).

The proposed Semantically Aligned task decomposition in MARL (SAMA), employs
PLM prompting with chain-of-thought (Wei et al., 2022) (CoT) to suggest potential goals and
provide suitable goal decomposition and subgoal allocation. The PLM-based task planning
is based on the current environment state, the agents’ current local contexts, and the
language task manuals (see Figure 1). SAMA incorporates language-grounded RL (Hanjie
et al., 2021; Ding et al., 2023) to train each agent’s goal-conditioned policy, enabling the
agents to comprehend the natural language sub-goals produced by PLMs. Additionally,
acknowledging current PLM limitations, such as hallucinations, SAMA leverages the self-
reflection mechanism (Yao et al., 2023; Shinn et al., 2023; Madaan et al., 2023; Chen et al.,
2023b) to prompt PLM re-planning of tasks when errors occur.

In summary, this paper’s main contributions are three-fold: 1) the introduction of a
novel algorithmic framework, SAMA, that implements disentangled, commonsense-driven
automatic subgoal generation by prompting PLMs to alleviate the credit assignment problem
in MARL; 2) the incorporation of a language-grounding mechanism, that enables each
agent to learn an RL policy conditioned on a natural language subgoal for efficient MARL
and PLM cooperation; and 3) the demonstration of SAMA’s considerable advantage in
sample efficiency compared to state-of-the-art subgoal-based MARL methods, as evidenced
by performance on Overcooked and MiniRTS.

2. Problem Formulation

This paper examines a fully cooperative multi-agent setting which can be characterized
by a decentralized, partially observable Markov decision process (DEC-POMDP, Peshkin
et al. 2000; Bernstein et al. 2002) ⟨I,S, {Ai}Ni=1 , {Oi}Ni=1 ,P, E , {Ri}Ni=1⟩, wherein I signifies
the domain of N agents. The environmental state is denoted by s ∈ S. Agent i is solely
able to access a localized observation oi ∈ Oi following the emission function E (oi | s). At
each discrete timestep, an individual agent i opts for an action ai ∈ πi (a | oi), originating
a jointly executed action a = ⟨a1, . . . , an⟩ ∈ ×Ai. This action consequently leads to the
subsequent state s′ according to the transition function P (s′ | s,a) and procures a mutually
experienced reward r = R(s,a).

We endeavor to develop an agent capable of addressing arbitrary long-horizon sparse
reward tasks utilizing linguistic task manuals. To achieve this, we contemplate employing
planning, amalgamating language-grounded RL policies tailored to fulfill sub-goals with a
planner that proposes semantically aligned goals, furnishes appropriate goal decomposition,
and apportions subgoal allocations, taking into account the environment’s current state,
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agents’ extant local contexts, and linguistic task manuals. We presume that task planning
adheres to Markov properties, implying that the planner only necessitates completing the
planning above operations under the environment’s current contexts.

Explicitly, we employ a PLM planner, i.e., GPT-3.5 (OpenAI, 2022) and GPT-4 (OpenAI,
2023), to leverage its encoded commonsense knowledge. The higher-level PLM planner
recommends the next semantically aligned goal the multi-agent system is required to
achieve, gk, at each round k, endeavoring to parse it into N distinct sub-goals g1k, · · · , gNk .
Subsequently, the PLM planner individually assigns the N subdivided sub-goals to the
corresponding N lower-level agents. For each agent and its correlated subgoal gitk and the
task manual z at each round k, a pretrained language-grounded RL policy π

(
aitk | oitk , z, g

i
k

)
samples an action aitk contingent upon the current local observation oitk , where tk represents
the timesteps in round k. Since completing a multi-agent task requires achieving multiple
transition goals, an episode contains multiple rounds.

3. Semantically Aligned Task Decomposition

This section initially provides an outline (Figure 2) of the proposed SAMA, which comprises
three components: task decomposition, self-reflection, and language-grounded MARL. The
task decomposition accomplishes credit assignment on both temporal and structural scales;
language-grounded MARL builds upon task decomposition, interacting with the environ-
ment to achieve a series of transition goals; the self-reflection, grounded in a trial-and-error
paradigm akin to RL, assimilates interaction outcomes to optimize the task decomposition
process. In Section 3.1, we will discuss the prerequisite preprocessing stages for the seamless
functioning of SAMA’s three core components. In Section 3.2, we will elaborate on realiz-
ing semantically aligned task decomposition by employing multi-stage and multi-faceted
prompting on PLM; In Section 3.3, we examine the training of language-grounded RL agents,
ensuring the agent’s policy corresponds closely to language objectives while promoting
collaboration among agents. In Section 3.4, we expound on the self-reflection mechanism’s
optimization of the task decomposition process, encompassing goal generation, decomposi-
tion, and assignment, making it more effective based on the outcome of language-grounded
policy execution. All prompts are shown in Appendix F.

3.1 Preprocessing

As will be elucidated, task decomposition and self-reflection are accomplished via PLM
prompting based on environmental states or history, agents’ local contexts, and task manuals,
all represented in natural language. Nevertheless, linguistic task manuals still need to be
made available for general multi-agent tasks. Furthermore, except for a handful of text-based
tasks, typical multi-agent environment interfaces cannot provide text-based representations
of environmental or agent state information and action information. Consequently, task,
state, and action translation is essential. We employ PLM for translation to maximize
SAMA’s adaptability.
Task Manual Generation. Drawing inspiration from SPRING (Wu et al., 2023), we
generate the language task manuals directly from the LATEX code of the original paper of
the multi-agent task. We illustrate the process in the yellow line of Figure 2. Initially, we
compose gameplay-specific prompts and obtain the task manual by directing the PLM with
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Figure 2: Illustration of task planning procedure and core modules of SAMA. SAMA uses
a hierarchical framework for task planning. The higher-level is based on goal generation,
decomposition and subgaol assignment of PLMs ( ), and the lower-level is based on subgoal
achievement of language-grounded RL agent. In order to complete the upper-level tasks,
SAMA needs to generate task manuals and translate states and actions based on PLMs in
advance. In order to complete lower-level tasks, SAMA also needs to generate diversified
sub-goals and design reward functions based on PLMs in advance. SAMA also introduces a
self-reflection mechanism to improve task planning success rate. The SAMA framework is
highly automated and requires only a few-shot example designs ( ), which greatly improves
SAMA’s generalization ability for different tasks.

prompts for the LATEX file. As a substantial portion of the paper is unrelated to gameplay,
we apply the relevant prompt set Qrel to determine relevance and the game prompt collection
Qgame to summarize gameplay and action space pertinent information. We then dissect the
entire LATEX file into paragraphs {Si

para} to avoid surpassing input length constraints for
most PLMs. For each paragraph Si

para, we filter paragraphs for relevance and retain only
those deemed relevant by at least one prompt from Qrel. We designate Prel as the set of
relevant paragraphs. Subsequently, for each prompt in Qgame and each paragraph in Prel,
we instruct the PLM to generate corresponding answers. Ultimately, we prompt the PLM
to deduplicate and summarize all answers to generate the final language task manual.

State and Action Translation. As states (encompassing the environment condition and
the agent’s local context) and actions are characterized by code instead of paper, we utilize
environment code files for state and action translation. However, given the non-contiguous
semantics of code files, we cannot segment and process them individually like LATEX files.
Fortunately, some successful code understanding applications exist, such as Github Copilot,
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Code interpreter, and the open-source implementation of LangChain (Chase, 2022). Thus,
we execute state translation based on LangChain (purple line in Figure 2). Explicitly,
LangChain first segregates the entire code project into multiple documents according to code
functions and classes, utilizing context-aware splitting. Each document is then encoded and
stored in a vector database. Eventually, PLM is augmented with the capacity to respond to
relevant questions by retrieval from the database. The inquiry, or prompt, consists of the
state and translation instruction.

3.2 Semantically Aligned Task Decomposition

We can accomplish semantically aligned task decomposition by prompting the PLM upon
obtaining the text-based task manual alongside the environment and agent state translation.
The entire process may be broadly classified into 3 stages (green line in Figure 2): goal
generation, decomposition, and sub-goal assignment. Exploring a goal space non-uniformly,
even with meaningful semantics, can be prohibitively costly in specific tasks. This occurs due
to the open-ended tasks, rendering the goals highly abstract. Consequently, this paper centers
on more straightforward tasks for preliminary investigation. Similar to most multi-agent
environments and extant literature on PLM-based decision-making (Du et al., 2023; Wang
et al., 2023), SAMA primarily concentrates on addressing tasks necessitating continuous
interactions with particular objects in the environment.

Goal Generation and Decomposition. As task completion demands interactions with
environmental objects, transition goals must comprise objects. Before goal generation, we
prompt the PLM to extract interactive objects from the task manual similar with (Varshney
et al., 2023). Subsequently, by constructing few-shot examples, we prompt the PLM to
generate rational transition goals and decompose them into sub-goals equivalent to the
number of agents predicated on the extracted objects and current environmental state
information, thereby effectuating temporal scale credit assignment. It is important to note
that object extraction is not obligatory, as goals can be generated based solely on the task
manual. Nevertheless, our experiments demonstrate that object extraction considerably
constrains the goal space produced by the PLM, enhancing the training efficiency of language-
grounded MARL and subsequently augmenting the final algorithm performance.

Subgoal Assignment. Following the transition goal’s decomposition into several sub-
goals equal to the agent count, we ultimately prompt the PLM to establish a one-to-one
correspondence between the sub-goals and the agents, relying on the task manual, decomposed
sub-goals, current environmental, and agent state. This culminates in the completion of the
structural scale credit assignment.

3.3 Language-Grounded MARL

Following the sub-goal assignment, a low-level policy is required to efficiently guide the agent
in accomplishing the sub-goal. In light of the constraints imposed by pre-trained language
models (PLMs) on low-level decision-making (Du et al., 2023; Wang et al., 2023), we employ
a goal-conditioned MARL policy for this purpose. However, conventional MARL tasks
predominantly operate in non-textual observation spaces reliant on image- or numeric-derived
information. Therefore, MARL agents must establish a connection between text-based
objectives and non-textual observations (or trajectories) to fulfill sub-goals effectively.
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Figure 3: L: Language-grounded MARL (blue agent viewpoint); R: One self-reflection trail.

To achieve this, we incorporate the language-grounded MARL for training the goal-
conditioned policy (Figure 3 Left), which facilitates the final stage of task planning—specifically,
the efficient attainment of sub-goals based on natural language. Referring to Section 2,
upon completion of the sub-goal assignment, agent i receives the instruction manual z and a
language-based sub-goal gik at iteration k. Concurrently, at each time step tk, agent i acquires
an observation oi,tk and produces a distribution over action π

(
ai,tk | oi,tk , z, gik

)
. The essence

of language-grounded MARL involves parameterizing policy π by incorporating a language
grounding module to generate a language-based representation X = Ground(oi,tk , z, g

i
k),

reflecting the relationship between the goal, manual, and observation. Agents endeavor
to comprehend game dynamics and general sub-goals by interacting with environmental
entities, ultimately updating the policy parameters using a standard MARL algorithm (such
as MAPPO; Yu et al. 2022).

However, two primary challenges must be addressed when integrating language-grounded
techniques into the SAMA framework: 1) Online sub-goal generation is computationally
expensive, as continuous PLM queries during language-grounded MARL training lead to
significant temporal and financial costs. 2) A reward function capable of indicating sub-
goal completion is lacking. In tasks with sparse rewards, rewards are assigned only upon
completion, such as onion soup delivery in Overcooked or team victory in MiniRTS. We
discuss the respective solutions below (orange line in Figure 2).

Offline Sub-goal Generation. To diminish the cost associated with PLM queries and
reduce language-grounded MARL training durations, we pretrain the latter. The technology
employed in state and action translation from Section 3.1 is reused to convert PLM prompt
content from ”translation” tasks to the generation of a diverse set of states, Dstate. Sub-
sequently, the process prompt PLM in Section 3.2 is applied to generate a corresponding
sub-goal set Dsubgoal for derived states.

Reward Design. The PLM is also utilized in designing the reward function to minimize
human intervention within the SAMA framework and enhance generalizability. Prior work
has validated the feasibility of this idea (Kwon et al., 2023; Yu et al., 2023). Initially,
we de-duplicate sub-goals in Dsubgoal by prompting the PLM, similar to the task manual
generation process from Section 3.1, to obtain a novel sub-goal set D′

subgoal. Next, inspired
by prompt engineering in Yu et al. (2023), we adopt the technology from state and action
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translation in Section 3.1 for PLM querying to generate the corresponding Python code
snippet capable of assessing sub-goal completion. The methods within the code snippet set
Dcode accept the current state as input and return either 0 or 1. The returned values serve
as binary rewards in training the language-grounded MARL.

Remarks. During the task planning, SAMA invokes the pretrained policy directly once the
sub-goals are generated under the extant environmental state by prompting the PLM. In
light of the potential emergence of unaccounted environmental states during the evaluation
process, periodic inclusion of the encountered states and corresponding PLM-generated sub-
goals to the dataset Dsubgoal is undertaken, facilitating the finetuning of the pretrained policy.
Moreover, an advantage of introducing PLM as a higher-level task planner is that we do not
need to learn how to split subgoals, as in Wang* et al. (2020). This allows us to significantly
reduce the training difficulty and sample complexity when training the language-grounded
MARL algorithm. Additionally, it should be noted that SAMA’s compatibility extends to
any language grounding module. Given the absence of prior testing on the Overcooked

task for extant language-grounded RL techniques, we opted for the facile implementation of
the EMMA model (Hanjie et al., 2021; Ding et al., 2023). As for MiniRTS, a corresponding
language-grounded RL algorithm (Xu et al., 2022) exists; thus, we proceeded to retrain
using its publicly available pretrained model. Refer to the Appendix E for more details.

3.4 Self-Reflection

Prevalent PLMs frequently yield to typical errors, including cyclic hallucination or arbitrary
decision-making, attributable to the PLM’s incapacity to assimilate knowledge from long
trajectories to refine subsequent planning. We adopt a self-reflection mechanism for discerning
hallucination and suboptimal planning (Shinn et al., 2023). Employing this technique,
the PLM planner will rectify (as necessitated) the semantically aligned goal generation,
decomposition, or subgoal assignment contingent upon the outcomes derived from the
language-grounded RL agent’s subgoal fulfillment.

As shown in blue line in Figure 2 and Figure 3 (Right), the self-reflection module contains
two core steps, namely evaluation and reflection. Concretely, after the goal generation,
decomposition and subgoal assignment, the pretrained language-grounded agent i carries
out a sequence of actions in response to the assigned subgoal gik at each round k. At
each timestep tk, the agent i executes an action ai,tk and the state transits to oi,tk+1. The
evaluator, or the code snippet in Dcode corresponding to the subgoal gik, will determine
whether gik has been completed. SAMA then calculates a heuristic h predicated on the
binary return value, potentially eliciting self-reflection. The application of heuristic h in this
paper is uncomplicated: if the return values all equal 1 (indicating successful execution of
the subgoal), self-reflection will not be prompted; conversely, it will be invoked.

If h suggests self-reflection, SAMA prompts the PLM planner to deliberate on its extant
semantically aligned goal generation, decomposition, or assignment following self-reflective
memory and environmental state. Since PLM needs to regenerate goals or subgoals during
the self-reflection, we need to recovery the environment to the previous state. For this, we
record the sub-goals generated sequentially during the task planning. In this way, the state
can be recovered by resetting the environment and calling the lower-level language-grounded
policy conditioned on the logged subgoal sequence. The above “reset-recovery” procedure
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is denominated as a self-reflection trial. Otherwise, SAMA prompts the PLM planner
for subsequent semantically aligned planning. Since most MARL tasks are episodic and
pretrained language-grounded RL policy is deterministic, the above reset-recovery process is
doable. In practice, we set a hyperparameter limit of a maximum of 3 reflections retained
within the agent’s history. The trial is discontinued if the agent surpasses the utmost quantity
(we also set it to 3 in the following experiments). In quantifying the empirical performance,
the instances encountered during self-reflection trials are not incorporated.

4. Experiments

4.1 Case Study: Overcooked

This section carries out an array of experiments in the Overcooked (Carroll et al., 2019;
Charakorn et al., 2020; Knott et al., 2021; Li et al., 2023b), specifically devised to address
sparse-reward, long-horizon, and coordination conundrums (Figure 4). In this dyadic common
payoff game, each participant manipulates a chef within a culinary setting, collaboratively
preparing and delivering soup, thereby accruing a shared reward of 20 for the team.

Figure 4: Left: Screenshots of the Overcooked layout (Carroll et al., 2019): Cramped Room,
Asymmetric Advantages, Coordination Ring, Forced Coordination, and Counter Circuit.
Right: The mean self-play rewards of episodes over 400 timesteps under 10 random seeds.
SAMA can approach or even exceed the performance of SOTA algorithm. Refer to learning
curves for variances.

We evaluate our approach in juxtaposition with alternative techniques, encompassing the
SOTA method on the Overcooked task, i.e., selfplay (Tesauro, 1994; Carroll et al., 2019),
PBT (Jaderberg et al., 2017; Carroll et al., 2019), FCP (Strouse et al., 2021), and COLE (Li
et al., 2023b), all of which employ PPO (Schulman et al., 2017) as the RL algorithm. In
addition, we assess the ASG method, MASER (Jeon et al., 2022), LDSA (Yang et al.,
2022a), and ROMA (Wang et al., 2020). Given that the prevailing SOTA methodologies on
the Overcooked task primarily target zero-shot coordination dilemmas, we utilize self-play
rewards to exhibit their performance.

Figure 4 (Right) illustrates the mean rewards per episode over 400 timesteps of gameplay
employing 10 random seeds. Figure 5 presents each algorithm’s learning curves. Synthesiz-
ing these two figures yields the following insights: (1) The prevailing SOTA algorithm in
Overcooked necessitates a substantial quantity of training samples; (2) The extant ASG
methodology exhibits suboptimal performance in long-horizon, sparse-reward, and coopera-
tion tasks exemplified by Overcooked; (3) Capitalizing on human commonsense embedded
within PLM, SAMA can approximate or even surpass the performance of the SOTA method
by utilizing merely five to one-tenth of the training samples due to semantically aligned task
planning; (4) Given the inherent limitations of the current PLM in long-horizon reasoning,
SAMA’s performance cannot achieve optimal outcomes. Figures 11 and 12 depict the prompt
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Figure 5: Learning curves of each methods in five Overcooked’s layouts.

devised for the Forced Coordination layout in Overcooked. It merits attention that com-
plementing the existing ASG method with techniques such as self-play and population-based
training, as demonstrated by algorithms like COLE, could engender a significant augmenta-
tion in performance. Nevertheless, this semantically non-aligned, end-to-end training devoid
of prior knowledge would also entail considerable consumption of training data.

4.2 Case Study: MiniRTS
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Figure 6: Left: Screeshots of the MiniRTS (Hu et al., 2019; Xu et al., 2022), which is a
real-time strategy game where the player in blue needs to control its units to kill the enemy
units in red. Right: Average win rates based on 100 test games and repeated over 3 random
seeds. The learning curve of SAMA is that of the language-grounded RL module.

This section elucidates the efficacy of SAMA concerning intricate tasks. MiniRTS (Hu
et al., 2019), a grid-world environment, encapsulates salient features of elaborate real-time
strategy games (see Figure 6). The setup consists of two entities: a player (blue) governed
by human/policy intervention, juxtaposed against a built-in script AI (red). Key objectives
for the player include resource acquisition, construction, and either obliterating enemy
units or demolishing the enemy base to secure victory. 7 distinct unit types establish a
rock-paper-scissors attack dynamic (Figure 9), with the environment facilitating a sparse

11



reward mechanism. At a game’s conclusion, the reward amounts to 1 if the agent wins and
−1 in the event of a loss. During other timesteps, a reward of 0 is attainable.

MiniRTS furnishes an array of built-in script AIs, and we choose the medium-level AI
as the opponent to facilitate expeditious prompt design for PLMs. Initially, this script
dispatches all three available peasants to mine the nearest resource unit. It then randomly
selects one of the seven army unit types, determining an army size n ranging between 3 and
7. A building unit corresponding to the selected army is constructed, followed by training n
units of the elected army category for deployment in attacks. The script perpetuates army
unit training, maintaining an army size of n.

In contrast to StarCraft II (Samvelyan et al., 2019; Ellis et al., 2022), where individual
unit control strategies may be designated, MiniRTS employs one strategy (agent) to govern
all units. To convert the latter into a multi-agent undertaking, we adopt a straightforward
modification of its environment from RED (Xu et al., 2022). Two agents emerge in the
modified environment, each governing half of the units. Analogously, we also modestly
modified the built-in medium-level AI script, enabling the random selection of two types of
army units in each iteration.

Given that the built-in script AI constructs only two army unit types per game, we
establish an oracle prompt design strategy following the ground truth of enemy units and the
attack graph. In the game’s nascent stages, the PLM instructs the agent to construct suitable
army units progressively. Subsequently, it transmits NA and encourages the policy to operate
autonomously, analogous to RED. A competent language-grounded RL policy adheres to
these directives, assembling the proper army units and executing actions independently,
yielding a higher win rate.

Our language-grounded RL agent commences with RED’s pretrained policy, which
exemplifies the SOTA in MiniRTS. In addition to RED, we examine ROMA as an alternative
baseline. Simulation win rates in Figure 6 (right) derive from 100 test games, repetitive
across 3 random seeds. ROMA does not constitute a language-grounded RL algorithm, so
RED’s pretrained model is inapplicable and must be learned from scratch. Observations
analogous to Overcooked emerge. In addition, while RED, leveraging Oracle commands,
boasts unsurpassed performance, SAMA approximates RED’s effectiveness due to the
utilization of human commonsense embedded in the PLM.

5. Closing Remarks and Limitations

We introduce an innovative approach, SAMA, to tackle the “sample scarcity” and “over-
representation on goals” challenges prevailing in cutting-edge MARL techniques when
addressing credit assignment concerns. SAMA prompts pre-trained language models with
chain-of-thought, enabling the proposal of semantically aligned goals, facilitating appropriate
goal decomposition and subgoal allocation, and endorsing self-reflection-driven replanning.
Moreover, SAMA integrates language-grounded RL to train each agent’s subgoal-conditioned
policy. Our findings demonstrate that such innate predispositions in PLMs are advantageous
for agents engaged in long-horizon, sparse-reward, and highly collaborative tasks, such as
Overcooked and MiniRTS, necessitating common-sense behaviors that alternative methods
cannot distill through end-to-end learning. This proves beneficial in circumstances featuring
an extensive spectrum of potential behaviors, of which only a few could be deemed feasibly
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utilitarian. Conversely, it may be less advantageous in settings with restricted scope for goal-
conditioned learning—where human rationality is immaterial or inexpressible in language or
when state information is not inherently encoded as a natural language sequence.

In the tasks examined, the efficacy of PLM remains contingent upon prompt selection.
Despite well-curated prompts and self-reflective mechanisms, PLMs occasionally err due
to omitted domain-specific knowledge. Various avenues exist to surmount this constraint,
including incorporating domain expertise within PLM prompts or fine-tuning PLMs on task-
specific data. Furthermore, the quality of suggestions markedly augments with model sizes.
The recurring prompting of massive PLMs might be temporally and financially unwieldy in
specific MARL settings. As general-purpose generative models emerge across arenas beyond
text, SAMA-inspired algorithms could be employed to generate reasonable visual goals or
goals in alternate state representations. Consequently, SAMA may function as a foundation
for subsequent research, facilitating the development of increasingly adaptable and versatile
methodologies to incorporate human contextual understanding into MARL.
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Appendix A. Related Work

A.1 Tackeling Credit Assignment in Multi-Agent Reinforcement Learning

The challenge of credit assignment arises not only on temporal scales but also on structural
scales. Value decomposition1 serves as the primary paradigm for addressing structural credit
assignment (Devlin et al., 2014; Nguyen et al., 2018; Foerster et al., 2018; Sunehag et al.,
2018; Rashid et al., 2020b; Son et al., 2019; Rashid et al., 2020a; Wang et al., 2021a; Böhmer
et al., 2020; Kang et al., 2022). Consequently, most studies tackling temporal and structural
credit assignment problems employ the “value decomposition+x” framework.

One prevalent example of “x” involves learning with efficient exploration, which shows
efficacy in task selection (Mahajan et al., 2019; Yang et al., 2020b; Zheng et al., 2021; Li et al.,
2021a; Zhang et al., 2021; Gupta et al., 2021). Subgoal-based methodologies have recently
emerged as a viable alternative inspired by approaches utilizing sub-goals in single-agent
RL (Kulkarni et al., 2016; Bellemare et al., 2016; Pathak et al., 2017; Burda et al., 2019;
Ecoffet et al., 2021; Guo et al., 2022) (also referred to as intrinsically motivated RL (Colas
et al., 2022a)). Intuitively, these methods decompose a task into a series of goals while
concurrently breaking down each goal into sub-goals that require completion by agents. In
doing so, both time and structural scales receive dense, goal-directed rewards, mitigating
the credit assignment dilemma.

A.2 Subgoal-based Multi-Agent Reinforcement Learning

Numerous antecedent studies have delved into subgoal-based MARL characterized by sparse
rewards. Early solutions primarily rely on artificially predefined rules (Becht et al., 1999;
Lhaksmana et al., 2018; Min et al., 2018; Grote et al., 2020), which limits their dynamism
and adaptability in new environments. Consequently, automatic subgoal generation (ASG)
serves as a more practical implementation of “x,” permitting application to various tasks
without relying on domain knowledge.

The early endeavors of ASG primarily revolved around a semi-end-to-end framework,
wherein the generation of sub-goals occurred automatically, but the lower-level policies
fulfilling these sub-goals were pre-trained. HDMARL (Tang et al., 2018) introduces a MARL
framework devised to tackle sparse-reward challenges via temporal abstraction. HDMARL
selects a singular subgoal from a predefined assortment contingent upon domain-specific
knowledge; consequently, such subgoal construction proves inapplicable across disparate
tasks. Works by Xiao et al. (2020, 2022) impose further constraints by necessitating the
pre-definition of goal-conditioned policies corresponding with each respective goal.

Predominant ASG methodologies predominantly integrate resolutions for the four identi-
fied problems ((a-d) in Section 1) within a bifurcated, end-to-end learning process. Initially,
agent-specific sub-goals are conceived, succeeded by learning policies conducive to realizing
these sub-goals. These stratagems can be broadly compartmentalized into dual classifications
contingent upon subgoal representation. Specific methods employ embeddings to encode
sub-goals, facilitating their generation via local observations (Yang et al., 2020a; Wang

1. In the study by Wang et al. (2021a), a theoretical demonstration is provided regarding the implicit nature
of counterfactual difference rewards in individual value decomposition. Owing to this, we propose to
include such classic mechanisms for managing structural credit assignment challenges under the broad
classification of value decomposition, albeit with some degree of flexibility.

15



et al., 2020, 2021b), local message-passing (Li et al., 2021b; Shao et al., 2022), or selecting
from a pre-formulated subgoal compendium utilizing global information (Yang et al., 2022a).
After this, goal-conditioned policies are learned through standard reward maximization.
Conversely, alternative approaches implicitly convert sub-goals into intrinsic rewards, refining
policies endorsing subgoal fruition by maximizing these shaped rewards (Phan et al., 2021;
Jeon et al., 2022; Nguyen et al., 2022; Yang et al., 2022b; Li et al., 2023a).

A.3 Language Grounded Reinforcement Learning

Language grounding encompasses the acquisition of natural languages unit comprehension,
such as utterances, phrases, or words, by capitalizing on non-linguistic contexts. Numerous
antecedent studies have addressed the conveyance of goals or instructions to agents through
text, eliciting agent behavior in response to language grounding (Branavan et al., 2012;
Janner et al., 2018; Wang et al., 2019; Blukis et al., 2020; Küttler et al., 2020; Tellex
et al., 2020; Xu et al., 2022), thus establishing a robust correlation between the provided
instructions and the executed policy. Recently, a plethora of research has delved into
generalizations from multifaceted vantage points. Hill et al. (2020a,b, 2021) scrutinized
the generalization concerning novel entity combinations, extending from synthetic template
commands to human-generated natural instructions and object quantities. Choi et al. (2021)
introduced a language-guided policy learning algorithm, facilitating expeditious task learning
through linguistic adjustments. Moreover, Co-Reyes et al. (2019) advocated using language
guidance for policies to achieve generalization in novel tasks by employing meta-learning
techniques. An alternative line of inquiry has emphasized the incorporation of task manuals
as supplementary information to bolster generalization (Narasimhan et al., 2018; Zhong
et al., 2020; Hanjie et al., 2021; Zhong et al., 2021). In contrast to the research mentioned
above, EnDi (Ding et al., 2023) advances the discourse by examining language grounding at
the entity level within multi-agent environments.

A.4 Foundation Models for Decision Making

Foundation models, trained through extensive datasets, have demonstrated remarkable
aptitudes in conjunction with fast adaptability for a plethora of downstream tasks in diverse
fields such as vision (Yuan et al., 2021), language (Kenton and Toutanova, 2019; Brown
et al., 2020), and cross-modalities (Ramesh et al., 2021; Jiang et al., 2022; Alayrac et al.,
2022). Capitalizing on such capabilities, these models have been employed to furnish RL
agents with rewards (Gupta et al., 2022; Fan et al., 2022; Kwon et al., 2023); a burgeoning
line of research is now investigating using foundation models (particularly PLMs) for refining
agent policies. In instances where agent actions are delineated through natural language,
PLMs may be employed to devise more sophisticated strategies for long-horizon tasks, as
linguistic descriptions of actions are anticipated to exhibit enhanced generalization than
low-level motor controls (Huang et al., 2022b,a; Brohan et al., 2023; Wang et al., 2023;
Dasgupta et al., 2023; Carta et al., 2023). Furthermore, when agent observations encompass
imagery and textual descriptions, vision-language captioning models can augment agent
observations with linguistic delineations (Tam et al., 2022; Du et al., 2023; Driess et al.,
2023). Remarkably, even in situations where agent states, actions, and rewards do not
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encompass visual or textual elements, PLMs have been identified as advantageous policy
initializers for both offline (Reid et al., 2022) and online RL (Li et al., 2022b).

Appendix B. Intrinsically Motivated Goal-Conditioned RL

Owing to the intimate correlation between the ASG and intrinsically motivated goal-
conditioned RL (IMGC-RL; Colas et al., 2022b), a succinct exposition of the IMGC-RL is
presented herein. Moreover, this section delves into the distinctions and connections between
the SAMA and the IMGC-RL paradigm. The proposal of the IMGC-RL framework primarily
endeavors to address tasks characterized by temporal-extended, sparse or delayed rewards.
By incessantly generating transitional phase subgoals and devising the corresponding intrinsic
reward functions, the framework dissects the original task into a succession of subordinate
tasks with shorter-horizons and dense rewards, thereby simplifying problem resolution.
However, it is imperative to underscore that the IMGC-RL pertains to a single-agent setting,
thereby exhibiting a considerable discrepancy when compared to MARL.
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Figure 7: Left: The illustration of intrinsically motivated goal-condtioned reinforcement
learning (IMGC-RL); Right: The proposed SAMA framework under the IMGC-RL context.

From Figure 7, it is discernible that the IMGC-RL framework primarily consists of two
modules: the goal generator and the goal-conditioned reinforcement learning. The former
may be further subdivided into three submodules, namely goal representation learning, goal
support set learning, and goal sampling; the latter encompasses goal-conditioned reward
design and goal-conditioned RL policy learning. For an in-depth examination of each module
and its submodules, along with related works, kindly refer to this comprehensive review
paper (Colas et al., 2022b). Furthermore, in categorizing existing MARL methodologies
based on the ASG framework from the perspective of IMGC-RL, one may broadly distinguish
two types according to the presence of goal-conditioned RL: one in which a pre-trained
policy stemming from imitation learning replaces the goal-conditioned RL module (Tang
et al., 2018; Xiao et al., 2020, 2022), and the other prevalent methodologies incorporates
both, employing either a two-phase or end-to-end learning paradigm (Yang et al., 2020a;
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Wang et al., 2020, 2021b; Yang et al., 2022a; Phan et al., 2021; Jeon et al., 2022; Nguyen
et al., 2022; Yang et al., 2022b; Li et al., 2023a).

Connection with the SAMA. The SAMA framework bears a remarkably close connec-
tion to IMGC-RL. Figure 7 delineates their intricate correspondence in detail. Initially,
SAMA renders sub-goals as natural language text whilst constraining the sub-goal space
or support by extracting interactive entities from the environment. Subsequently, SAMA
implements goal sampling and the design of goal-conditioned reward functions by prompting
PLMs. Ultimately, SAMA accomplishes the training of the goal-conditioned RL policy by
incorporating language grounding techniques.

Appendix C. Missing Discussions

There are some PLM-based decision-making methods bear the closest resemblance to our
work: DEPS (Wang et al., 2023), ELLM (Du et al., 2023), Plan4MC (Yuan et al., 2023) and
GITM (Zhu et al., 2023). DEPS (Wang et al., 2023) engenders the whole goal sequence via
prompt PLM, and the goal-conditioned policy is ascertained through imitation learning in
advance. In contrast, ELLM (Du et al., 2023), Plan4MC (Yuan et al., 2023) and GITM (Zhu
et al., 2023), akin to SAMA, prompts the PLM to generate the subsequent goal contingent
on the current state. ELLM (Du et al., 2023) trains goal-conditioned RL policy through
synthetically devised goal-oriented, dense intrinsic rewards, Plan4MC (Yuan et al., 2023)
and GITM (Zhu et al., 2023), similar with DEPS, adopt the pre-trained or pre-defined
goal-condtioned policy to achieve goals.

SAMA transcends a mere augmentation of these works within multi-agent contexts,
showcasing marked innovation in following three aspects:

Refined and Automated Preprocessing. In contrast to prevailing approaches reliant
on manual translations or those confined to specific translated environments, such as
Minedojo (Fan et al., 2022), SAMA presents a comprehensive procedural framework for
environmental translation, incorporating the generation of task manuals, state, and action
translations. Furthermore, by incorporating code understanding technology proposed by
LangChain (Chase, 2022), SAMA alleviates the training complexities of language-grounded
MARL and enhances self-reflection quality. This refined and automated preprocessing
enables SAMA to transition to novel tasks at a less expense.

Introspective Goal Decomposition. Devising explicit sub-goals for singular agents
in sparse-reward multi-agent tasks optimally remains an untenable endeavor for humans.
Generally, human aptitude is demonstrated in devising strategies for the aggregate system.
Consequently, it can be logically deduced that PLMs, endowed with human knowledge,
exhibit similar tendencies. Thus, SAMA deliberately orchestrates a goal decomposition
(over multiple agents) phase. Moreover, SAMA incorporates a self-reflection mechanism to
ameliorate PLM limitations in long-horizon reasoning.

Automated Goal-conditioned Policy Optimization. DEPS, Plan4MC and GITM,
reliant on imitation-learning-based or predefiend skills, or goal-conditioned policy, necessitates
extensive expert data encompassing an array of achieved goals. However, the unbounded
nature of the goal space emitted by PLM renders it challenging for these method to be
directly applied to alternative tasks; ELLM, contingent on the synthetic crafting of intrinsic
rewards, engenders its complexities when extending to a multi-agent context. Reward design
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constitutes a longstanding and contentious issue in MARL, as both global rewards and
local rewards have been shown to be inherently flawed: the former may foster indolence in
agents, while the latter might yield egoistic agents (Du et al., 2019; Mao et al., 2020; Wang
et al., 2022a; Hua et al., 2023). In contrast, SAMA leverages language-grounded RL for the
automatic optimization of a (language-based) goal-conditioned policy.

Appendix D. Environment Details

D.1 Overcooked

In this section, we carry out an array of experiments in the Overcooked environment (Carroll
et al., 2019; Charakorn et al., 2020; Knott et al., 2021; Li et al., 2023b), specifically devised to
address sparse-reward, long-horizon, and coordination conundrums. In this dyadic common
payoff game, each participant manipulates a chef within a culinary setting, collaboratively
preparing and delivering soup, thereby accruing a shared reward of 20 for the team. The
Overcooked domain we employed encompasses five distinct configurations (refer to Figure 8),
namely Cramped Room, Asymmetric Advantages, Coordination Ring, Forced
Coordination, and Counter Circuit.

Figure 8: Screenshots of the Overcooked layout. From left to right: Cramped Room,
Asymmetric Advantages, Coordination Ring, Forced Coordination, and Counter Circuit.

The comprehensive elucidation of the five configurations is (Li et al., 2023b):

• Cramped Room. The cramped room constitutes a rudimentary setting wherein two
participants are confined to a diminutive space possessing a singular pot (black box
with gray base) and one serving point (light gray square). Consequently, individuals
are anticipated to exploit the pot to its fullest and effectually dispense soup, even with
elementary collaboration.

• Asymmetric Advantages. Within this arrangement, two players are situated in separate,
isolated kitchens. As the appellation implies, the locations of onions, pots, and serving
points exhibit asymmetry. In the left kitchen, onions are remote from the pots, while
serving points are proximal to the central region of the configuration. In contrast, within
the right kitchen, onions are positioned near the central area, and the serving points are
distant from the pots.

• Coordination Ring. This annular configuration necessitates both participants to
maintain constant motion to avoid impeding one another, particularly in the top-right and
bottom-left vertices where the onions and pots are situated. To achieve optimal synergy,
both pots should be employed.
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• Forced Coordination. The Forced Coordination layout represents another separation
of the two agents. The left side lacks pots or serving points, while the right side is devoid
of onions or pots. As a result, the pair must synchronously orchestrate their actions to
accomplish the task. The left player is expected to prepare onions and plates, while the
right player oversees cooking and serving responsibilities.

• Counter Circuit. The Counter Circuit is an additional annular configuration but with an
expanded cartographical scope. Within this layout, pots, onions, plates, and serving points
occupy four distinct orientations. Constrained by the constricted passageways, players are
prone to obstruction. Therefore, coordination and task execution prove challenging in
this environment. Individuals must acquire the advanced technique of positioning onions
in the central zone to facilitate rapid exchange, thereby augmenting performance.

We selected Overcooked as a focal case due to the facile transformation of its state
space, action space, and reward function into comprehensible natural language text via
pre-established scripts. Furthermore, the environment state information readily permits the
discernment of successful subgoal completion. Consequently, this facilitates the expeditious
training of language-grounded RL policies and the integration of self-reflection mechanisms.

D.2 MiniRTS

The ensuing content is gleaned from Hu et al. (2019) and Xu et al. (2022); for a comprehensive
elucidation, one is encouraged to consult the source manuscript.

Units and Map. MiniRTS encompasses three unit classifications: resource, building, and
army units. Resource units are stationary, invariably present at the game’s commencement,
and not producible by any entity. Solely “peasants” can extract resources from these resource
units for building specific buildings or army units. Moreover, six stationary Building unit
categories exist. Five building types can generate specific army units (Figure 9). Conversely,
the “guard tower” neither spawns army units nor can launch assaults upon adversaries.
“Peasants” erect building units on any vacant map location. Lastly, seven army unit variants
can traverse and assail opponents. Except for the “peasant”, the remaining six army units
and “guard tower” employ a rock-paper-scissors paradigm.

The game map comprises a discrete 32× 32 grid partitioned into grass and river cells.
Grass cells permit building unit construction and passage for army units, whereas exclusively
“dragon” may cross river cells. The initialized map contains one “town hall,” three “peasants,”
and randomly positioned river cells and resource units.

Observation Space. An agent’s observation encompasses a 32× 32 map, supplemented
by additional game states (e.g., observable units’ health points and resource unit quantities).
Regions not traversed are masked, and unobserved enemy units are eliminated.

Action Space. We follow the variant action space designed by (Xu et al., 2022). Two
agents govern half of the total units. A 0/1 action is appended to each unit, signifying
whether it will act or remain IDLE. Specifically, agents generate a collective action and a 0/1
flag for every units. For a unit designated with a 1, it executes the collective action; for a
unit labeled 0, the action CONTINUE is implemented. After discerning which units will react,
the agent then predicts an action type (e.g., MOVE, ATTACK) and subsequently anticipate
action outputs based on the said action type. We collate all accessible action types and their
outputs as follows.
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Figure 9: Left: Depicted in the screenshots (of RED) are the intricate attack dynamics
within MiniRTS. Utilizing a rock-paper-scissors attack graph schema, each army type exhibits
distinct strengths and vulnerabilities against opposing units. For instance, the “swordsman”
efficaciously subdues the “spearman”; conversely, the former is susceptible to the prowess of
the “cavalry.” The triumvirate of “swordsman,” “spearman,” and “cavalry” maintains a
superior offensive stance against the “archer.” Right: Various building units generate diverse
army units employing resource utilization (in RED). The “workshop,”, for example, engenders
the creation of “archer,” “dragon,” and “catapult” units, while alternative buildings yield a
singular unit type. Exclusive to the “peasant” is the capability to extract resources from
resource units and erect additional building units.

• IDLE: None (the elected units remain stagnant).

• CONTINUE: None (Units persist with their prior actions).

• GATHER: The target resource unit’s ID.

• ATTACK: The enemy unit’s ID.

• TRAIN: The army type to be trained.

• BUILD:The building type and the designated (x, y) construction position.

• MOVE: The designated (x, y) movement position.

Reward Function. Sparse rewards define this environment. The agent garners a reward
of 1 if victorious and −1 if defeated. For all other timesteps, the environment yields a reward
of 0.

Appendix E. Implementation and Training Details

All code will be released soon, licensed under the MIT license (with Overcooked, MiniRTS,
and RED licensed under their respective licenses). Concerning the PLM specifically
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gpt-3.5-turbo, we employ OpenAI’s APIs for facilitation. The PLM is exclusively utilized
during the pretraining phase of the language-grounded RL policy (limited to Overcooked)
and the evaluation processes, thus preventing any undue financial obligations to SAMA’s
implementation. We incorporate the technique of batch prompting2 (Cheng et al., 2023) to
simultaneously minimize token and temporal expenditures when engendering pretraining
sub-goals and appraising SAMA’s efficacy under varied random seeds. The computing
hardware comprises two servers, each with 256GB of memory, and a pair of NVIDIA GeForce
RTX 3090s, outfitted with 24GB of video memory.

E.1 Overcooked

E.1.1 The Proposed SAMA

At each timestep t, every agent i acquires an h×w grid observation oit and yields a distribution
over the action π

(
ait | oit, z, git

)
. The action is characterized by a one-hot matrix mirroring

the observation’s dimensions, signifying the agent’s targeted relocation. It is imperative
to note that, besides relocation, Overcooked agents’ actions also enable manipulation of
environmental objects, such as onions and pots. We augment the original Overcooked
map to reduce the action space, thus facilitating the agent’s co-location with the object.
Consequently, the action of operating is seamlessly converted into a relocation action. We
shall excise the subscript t for expediency.

Possessing an encompassing linguistic knowledge, the agent initially aligns this language
with environmental observations, employing a pre-existing language grounding module to
engender a language-based representation X = Ground(o, z, g) ∈ Rh×w×d. This conduit
captures the intricate connections among the subgoal, the task manual, and the observation.
Such a representation is harnessed to generate the policy. It is essential to highlight that
SAMA remains congruent with any language grounding module. Pragmatically, we construct
our framework upon the foundation of EMMA3 (Hanjie et al., 2021), embracing their
grounding modules - the multi-modal attention.
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Figure 10: The three components of the EMMA model: Text Encoder, Entity Representation
Generator, and Action Module. The Text Encoder uses a pretrained BERT-base model to
encode entity descriptions within a grid observation, which are then processed by the Entity
Representation Generator to position entity representations in a tensor. Finally, the Action
Module derives action distributions based on the processed entity representation tensor.

2. https://github.com/HKUNLP/batch-prompting.
3. https://github.com/ahjwang/messenger-emma, MIT License.
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The architecture of EMMA is illustrated in Figure 10. The EMMA model encompasses
three components: Text Encoder, Entity Representation Generator, and Action Module (Han-
jie et al., 2021; Ding et al., 2023). The input for the Text Encoder constitutes a h× w grid
observation imbued with entity descriptions. EMMA encodes each description utilizing a
pretrained and fixed BERT-base model. Subsequently, the key and value embeddings are
extracted from the encoder. Within the Entity Representation Generator, EMMA embeds
each entity’s symbol into a query embedding, attending to the descriptions accompanied by
their respective key and value embeddings. For each entity e in the observation, EMMA
situates its representation xe within a tensor X ∈ Rh×w×d, precisely aligning with the
entity’s position in the observation to preserve comprehensive spatial information. The
agent’s representation is merely a learned embedding of dimension d. In the Action Module,
to furnish temporal information that facilitates grounding movement dynamics, EMMA
concatenates the outputs of the representation generator from the most recent observations,
procuring a tensor X ′ ∈ Rh×w×d. EMMA conducts a 2D convolution on X ′ over the h,w
dimensions, deriving a distribution over the actions with an identical shape to the grid
observation. For further information regarding EMMA, the reader is directed to the original
paper (Hanjie et al., 2021).

The EMMAmodel exhibits end-to-end differentiability and is trained using the MAPPO4 (Yu
et al., 2022) algorithm with γ = 0.99, ϵ = 0.01, along with the Adam optimizer, featuring a
learning rate of α = 5× 105. Each episode is delimited to encompass 400 timesteps. The
validation games are employed to preserve the model parameters with the highest reward
per episode throughout the training, subsequently utilizing these parameters to evaluate the
models on the test games under 10 random seeds.

E.1.2 Baselines

We train and evaluate the self-play and PBT approaches utilizing the Human-Aware Rein-
forcement Learning repository5 (Carroll et al., 2019), implementing PPO (Schulman et al.,
2017) as the RL algorithm. We train FCP in accordance with the FCP publication (Strouse
et al., 2021) and employ COLE’s implementation (referenced below). The COLE agent,
aligned with the manuscript (Li et al., 2023b), adapts a population size of 5 and incorporates
the original implementation6. Furthermore, the MASER7, LDSA8, and ROMA9 agents
maintain the utilization of their original implementations.

E.2 MiniRTS

Except for ROMA, all policies commence from a warm-start employing the RED model10.

4. https://github.com/marlbenchmark/on-policy, MIT License.
5. https://github.com/HumanCompatibleAI/human_aware_rl/tree/neurips2019.
6. https://sites.google.com/view/cole-2023
7. https://github.com/Jiwonjeon9603/MASER
8. https://openreview.net/attachment?id=J5e13zmpj-Z&name=supplementary_material, Apache-2.0

License.
9. https://github.com/TonghanWang/ROMA, Apache-2.0 License.

10. https://drive.google.com/file/d/1dEjG9IOCwunUjVUqOOdDxaYr0lmg9Li1/view?usp=sharing, MIT
License.
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E.2.1 SAMA and RED Implementations

The training for SAMA and RED remains identical, with SAMA’s required natural language
instructions (i.e., sub-goals) adhering to the oracle script furnished by (Xu et al., 2022). The
sole distinction arises during testing, wherein SAMA receives instructions via PLM prompting,
whereas RED acquires instructions through Oracle scripts. Given our adaptation of MiniRTS
to accommodate multi-agent algorithms, we conformed to the RED implementation and
training methodology to refine the pretrained language-grounded RL policy.

The policy architecture parallels that of Hu et al. (2019), albeit with the incorporation
of an ancillary value head as the critic, as proposed by (Xu et al., 2022). We refine the
policy training employing a concurrent MAPPO process. Synchronous parallel workers
gather transitions (s, a, r, s′), with the amassed data subdivided into four distinct batches
to execute MAPPO training, utilizing a discount factor of 0.999. Generalized Advantage
Estimation (GAE) advantage is applied to each data point, culminating in 100 training
epochs per iteration. The Behaviour Cloning (BC) training procedure bears resemblance
to Hu et al. (2019), introducing an additional 0/1 action to govern the controllable unit’s
behavior. These supplementary actions derive from prevalent action type commonalities.

We employ the Adam optimizer, assigning discrete optimizers for RL and BC training
endeavors. A total of 15 training iterations, equivalent to 1, 500 MAPPO epochs, is employed.
We establish β = (0.9, 0.999) for both phases, accompanied by a constant learning rate
of 2 × 10−4 for BC training. The RL training’s learning rate is adapted across 1, 500
MAPPO epochs, commencing linearly from 0 to 5× 10−5 within the initial 300 epochs and
progressively diminishing from 5 × 10−5 to 0. For further elucidation, please consult the
original paper (Xu et al., 2022).

E.2.2 ROMA Implementation

We develop ROMA agents employing the original implementation11. To accommodate the
original implementation within the state and action space of the MiniRTS, we supplanted its
network structure with the policy architecture employed by SAMA and RED.

Appendix F. Prompt Engineering

F.1 Task Manual Generation

Upon paragraphing the LATEX document, we employ question sets Qrel and Qgame, as utilized
in (Wu et al., 2023), to filter for relevance and extract pivotal information respectively, as
shown in Listing 1 and Listing 2.

Listing 1: Qrel

1. Would this paragarph help me succeed in this game?

2. Does this paragraph contain information on the game mechanics, or game

↪→ strategies?

Listing 2: Qgame

11. https://github.com/TonghanWang/ROMA, Apache-2.0 License.
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1. Write all information helpful for the game in a numbered list.

2. In plain text. List all objects I need to interact/avoid to survive in

↪→ the game. Use "I would like to X object Y" in each step. Replace Y

↪→ by the actual object, X by the actual interaction.

3. Write all game objectives numbered list. For each objective, list its

↪→ requirements.

4. Write all actions as a numbered list. For each action, list its

↪→ requirements.

The generated task manuals with GPT-4 are shown in Listing 3 for Overcooked and
Listing 4 for MiniRTS. We use four papers (Carroll et al., 2019; Charakorn et al., 2020; Knott
et al., 2021; Li et al., 2023b) for Overcooked, and another two papers (Hu et al., 2019; Xu
et al., 2022) for MiniRTS.

Listing 3: Task Manual for Overcooked

You are a player playing a game.

In this game, two chefs in a restaurant serve onion soup.

This game aims to serve as many orders as possible before the end of time.

To complete an order, the following steps need to be completed in order:

1. Take three onions from the onion storage room and put them on the

↪→ crafting table;

2. It takes 20 seconds for the crafting table to automatically make an

↪→ onion soup;

3. Take a plate from the sideboard to the crafting table to serve the onion

↪→ soup;

4. Take the onion soup from the crafting table, put it on the serving

↪→ counter, and an order is completed now.

The above steps require two chefs to cooperate to complete.

In addition to the above steps, there are the following rules in the game:

1. Each chef can only transport one onion at a time;

2. The crafting table starts working if and only if there are three onions

↪→ on the crafting table;

3. The finished onion soup must be served on a plate taken from the

↪→ sideboard before being brought to the counter.

A brief description of the game map is as follows:

two chefs are in separate rooms.

The room on the left contains only the onion storage room and the sideboard

↪→ , while the room on the right contains two crafting tables and a

↪→ serving counter.

There are two crafting tables, one above the right room and one to the

↪→ right of the right room.

There is a shared bar between the two rooms, which can be used to pass

↪→ items.
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Listing 4: Task Manual for MiniRTS

MiniRTS is a game environment designed to encompass the fundamental

↪→ complexities of real-time strategy games.

Consisting of two playing sides- a user-run unit governed by a pre-set

↪→ policy and an in-built AI enemy, players control their units to

↪→ gather resources, manage constructions, and defeat enemy units by

↪→ destroying their base or eliminating all opposition on the

↪→ battlefield.

MiniRTS contains 6 unique building types, each fulfilling a specific role

↪→ in-game. Using allocated resources, the PEASANT unit type can

↪→ construct any building type in any available area on the map.

The constructed buildings can then be utilized to construct various unit

↪→ types. While most building types generate up to one distinct unit

↪→ type, the WORKSHOP can produce 3 different unit types.

For further specifics, please refer to the following table:

Building name | Description

TOWN HALL | The main building of the game, it allows a player to train

↪→ PEASANTs and serves as a storage for mined resources.

BARRACK | Produces SPEARMEN.

BLACKSMITH | Produces SWORDMEN.

STABLE | Produces CAVALRY.

WORKSHOP | Produces CATAPULT, DRAGON and ARCHER. The only building that can

↪→ produce multiple unit types.

GUARD TOWER | A building that can attack enemies, but cannot move.

A total of 7 unit types form a rock-paper-scissors attacking dynamics.

For further specifics, please refer to the following table:

Unit name | Description

PEASANT | Gathers minerals and constructs buildings, not good at fighting.

SPEARMAN | Effective against cavalry.

SWORDMAN | Effective against spearmen.

CAVALRY | Effective against swordmen.

DRAGON | Can fly over obstacles, can only be attacked by archers and towers.

↪→
ARCHER | Great counter unit against dragons.

CATAPULT | Easily demolishes buildings.

Kindly note that the maximum number of each building cannot exceed 1 and

↪→ likewise the maximum number of each type of unit cannot exceed 6.
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F.2 State and Action Translation

The prompt for state and action translation is shown in Listing 5.

Listing 5: Prompt for State and Action Translation

At present, you serve as a translator of environmental state, agent states,

↪→ and actions. It is incumbent upon you to extract the explicit

↪→ semantics represented by the structured information I provide,

↪→ guided by the task manual and drawing from the code repository.

↪→ Synthesize the acquired information into one sentence, articulating

↪→ it in refined natural language.

F.3 Interactive Objects Extraction

The prompt for state and action translation is shown in Listing 6.

Listing 6: Prompt for Interactive Objects Extraction

Extract all pertinent, interactive objects from the task manual, which are

↪→ instrumental in accomplishing the task. Refrain from including

↪→ extraneous items, and present the extracted objects in a comma-

↪→ separated list.

F.4 Offline Sub-goal Generation

The prompt for diverse goal generation is shown in Listing 7.

Listing 7: Prompt for Diverse Goal Generation

At present, you serve as a generator of environmental state and agent

↪→ states. Kindly generate additional, diverse states in accordance

↪→ with the structured status information I have inputted, following

↪→ the task manual and code repository. The produced states must adhere

↪→ to the subsequent constraints: 1. Conformity with the input format;

↪→ 2. Ensuring state legality.

F.5 Reward Design

The prompt for reward design is shown in Listing 8.

Listing 8: Prompt for Reward Design

At present, you function as a Python method generator, formulating custom

↪→ Python methods grounded in given objectives, the task manual, and a

↪→ code repository. These functions necessitate structured

↪→ environmental states as input-such as [some examples]-and

↪→ ascertaining whether the input has fulfilled the stated objectives;

↪→ they must yield "1" if achieved and "0" if unmet. Crucially, no

↪→ values other than "0" or "1" should be generated.
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F.6 Goal Generation, Decomposition and Subgoal Assignment

F.6.1 Overcooked

Figure 11 and Figure 12 are illstrate the colored prompts for better understanding.

You are a player playing a game. In this game, two chefs in a restaurant serve onion soup. This game aims to serve as many orders
as possible before the end of time. To complete an order, the following steps need to be completed in order: 1. Take three onions
from the onion storage room and put them on the crafting table; 2. It takes 20 seconds for the crafting table to automatically
make an onion soup; 3. Take a plate from the sideboard to the crafting table to serve the onion soup; 4. Take the onion soup from
the crafting table, put it on the serving counter, and an order is completed now.

The above steps require two chefs to cooperate to complete. In addition to the above steps, there are the following rules in the
game: 1. Each chef can only transport one onion at a time; 2. The crafting table starts working if and only if there are three
onions on the crafting table; 3. The finished onion soup must be served on a plate taken from the sideboard before being brought
to the counter.

A brief description of the game map is as follows: two chefs are in separate rooms. The room on the left contains only the onion
storage room and the sideboard, while the room on the right contains two crafting tables and a serving counter. There are two
crafting tables, one above the right room and one to the right of the right room. There is a shared bar between the two rooms,
which can be used to pass items.

Valid elements: onion, onion storage room, shared bar,
dining cabinet, plate, crafting table, onion soup,
counter.

Your task is first to give the goal that must be
completed according to the current situation by
operating valid elements.

Then you need to decompose the goal into two sub-goals
selected from valid sub-goals so that the two chefs can
complete it separately.

Task Manual

Instruction for Goal Generation & Decomposition

The current situation is: there are no onions on the crafting table
and shared bar. To formulate goals, think step by step: To fill as
many orders as possible, we must constantly make onion soup and
deliver it to the serving counter. There are currently no onions on
the crafting table, meaning no ready-made onion soup exists. 

So the current goal by operating valid elements is: making onion
soup.

Further, to decompose the goal into two sub-goals, let the two chefs
complete it separately, let us think step by step: 

One-shot Example & Chain-of-Thought Prompting

You are a goal assigner playing a game. In this game,
two restaurant players (i.e., chefs) serve onion soup.
This game aims to serve as many orders as possible
before the end of time.

Your task is to assign two current sub-goals to each
player one-to-one according to the current status of
the game and two chefs. You only can assign one of two
current sub-goals to chefs.

Instruction for Subgoal Assignment

The two current sub-goals: 1. one chef takes an onion from the onion
storage room and transports it to the shared bar; 2. one chef
transports an onion from the shared bar to the crafting table.

The current status of the game: one crafting table is making onion
soups, two onions are on the other crafting table, and one onion is
on the shared bar.

The current status of the two chefs: Chef A is idle in the left
room; Chef B is idle in the right room.

One-shot Example & Chain-of-Thought Prompting

To allocate sub-goals reasonably and efficiently, let us think step by step: the current two sub-goals are one chef takes an onion
from the onion storage room and transports it to the shared bar, and one chef transports an onion from the shared bar to the
crafting table. We can assign two sub-goals to the two chefs since they are both idle. Note that the onion storage room is in the
left room, where Chef A is, so only Chef A can take the onion. Similarly, the crafting tables are in the right room, where Chef B
is located, so only Chef B can access the crafting table and transport the onion from the shared bar to the crafting table.
Therefore, the result of the two current sub-goals assignment is as follows: Chef A: one chef takes an onion from the onion
storage room and transports it to the shared bar; Chef B: one chef transports an onion from the shared bar to the crafting table.

since the current goal is to make onion soup, we need to transport three onions from the storage room to the crafting table. No
onions are currently on the crafting table, so three more are needed. Since the onion storage room and the crafting table are in
two separate rooms, we need one chef to carry three onions from the onion storage room to the shared bar and another chef to carry
three onions from the shared bar to the crafting table. Now there are no onions on the shared bar, and each chef can only carry
one onion at a time, so the two sub-goals by operating valid elements are: 1. one chef takes an onion from the onion storage room
and transports it to the shared bar; 2. one chef goes to the bar and waits.

Figure 11: The prompt designed for the Forced Coordination layout in Overcooked.

Overview Contemplating the lucidity of the material, we refrain from exhibiting the
prompts germane to each layout within the Overcooked. The subsequent excerpt furnishes
an illustration of a prompt pertaining to Forced Coordination. Divergent designs adhere
to an analogous blueprint, conceding the substitution of content correlated to the layouts,
encompassing layout delineation, and the few-shot CoT examples, among others.
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Instruction for Self-reflection

As a decision inspector, you are playing a game where two restaurant players (chefs) are serving onion soup, with the
intention of fulfilling as many orders as possible before the time runs out.

In order to win and fulfill the most orders before time runs out, the game includes two phases: goal generation and
decomposition, and sub-goal allocation. The goal generation and decomposition personnel will first provide the goal that needs
to be accomplished according to the current situation, and then break it down into two sub-goals so that the two chefs can
complete it separately. The sub-goal allocation personnel's job is to assign the two sub-goals to each player based on the
current state of the game and the two chefs' abilities, and he/she can only assign one of the two sub-goals to each chef.

Valid phase: goal generation and decomposition, subgoal assignment.

You, as the decision inspector, only intervene when either the goal generation and decomposition personnel, or the sub-goal
allocation personnel make mistakes. Your job consists of two parts. Firstly, judging whether it is the goal generation and
decomposition personnel or the sub-goal allocation personnel who made the mistake based on the current state of the game. You
can only choose from the valid phases.

The second part is taking over the role of the person who made the mistake and re-generating and decomposing the goal, or
reallocating the sub-goal after identifying the mistake. Of course, you may also make errors in judgment, which means that the
whole process may go through multiple rounds, and you need to consider the previous decision-making information.

One-shot Example and Chain-of-Thought Prompting for Step 1 

The current situation is: there are no onions on the crafting table and shared bar. The generated goal from the goal generation
and decomposition personnel is: making onion soup. The decomposed two sub-goals from the goal generation and decomposition
personnel are: one chef takes an onion from the onion storage room and transports it to the shared bar; one chef transports an
onion from the shared bar to the crafting table. The current status of the game: there are no onions on the crafting table and
shared bar. The current status of the two chefs: Chef A is idle in the left room; Chef B is idle in the right room. The result
of the two current sub-goals assignment decided by the sub-goal allocation personnel is as follows: Chef A: one chef takes an
onion from the onion storage room and transports it to the shared bar; Chef B: one chef transports an onion from the shared bar
to the crafting table. The failed decision inspection history: None.

To determine whether any errors occurred during the phase of goal generation and decomposition, or during the subgoal
allocation stage, let us think step by step. Firstly, we will concentrate on the goal generation and decomposition phase. Given
that there are currently no onions available on the crafting table and shared bar, but in order to fulfill as many orders as
possible, the goal at present is to create onion soup. Hence, there seems to be no issue with goal generation. In the next
step, we must subdivide the above goal into two subgoals. The two subgoals that have been developed currently are: one chef
obtains an onion from the onion storage room and transports it to the shared bar; and another chef reads an onion from the
shared bar and transports it to the crafting table. Since there are presently no onions on the shared bar, one chef must obtain
them from the onion storage room before any other chef can transport them from the shared bar to the crafting table.
Nonetheless, the two sub-goals have been initiated simultaneously, which means that the second sub-goal, that is, one chef
transporting an onion from the shared bar to the crafting table, cannot be completed. Based on the above analysis, it appears
that the problematic stage is: goal generation and decomposition.

One-shot Example and Chain-of-Thought Prompting for Step 2
Previous failed goals: None.

Previous failed subgoals: one chef takes an onion from the onion
storage room and transports it to the shared bar; one chef
transports an onion from the shared bar to the crafting table.

For more reasonable goal generation and decomposition, the goals you
generate or the subgoals you decompose should no longer be
consistent with previously failed goals or subgoals.

[Similar with instructions for goal generation and decomposition]

Previous failed subgoal assignments: Chef A: one
chef takes an onion from the onion storage room and
transports it to the shared bar; Chef B: one chef
transports an onion from the shared bar to the
crafting table.

For more reasonable subgoal assignment, the
assignment you make should no longer be consistent
with previously failed subgoal assignments.

[Similar with instructions for subgoal assignment]

Figure 12: The prompt of self-reflection designed for the Forced Coordination layout
in Overcooked. The prompts are composed of task manual in Figure 11, instruction and
one-shot CoT example.

Listing 9: Instruction for Goal Generation and Decomposition

Valid elements: onion, onion storage room, shared bar, dining cabinet,

↪→ plate, crafting table, onion soup, counter.

Your task is first to give the goal that must be completed according to the

↪→ current situation by operating valid elements.

Then you need to decompose the goal into two sub-goals selected from valid

↪→ sub-goals so that the two chefs can complete it separately.
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Listing 10: One-shot Example and Chain-of-Thought Prompting for Goal Generation and
Decomposition

The current situation is: there are no onions on the crafting table and

↪→ shared bar.

To formulate goals, think step by step:

To fill as many orders as possible, we must constantly make onion soup and

↪→ deliver it to the serving counter.

There are currently no onions on the crafting table, meaning no ready-made

↪→ onion soup exists.

So the current goal by operating valid elements is: making onion soup.

Further, to decompose the goal into two sub-goals, let the two chefs

↪→ complete it separately, let us think step by step:

since the current goal is to make onion soup, we need to transport three

↪→ onions from the storage room to the crafting table.

No onions are currently on the crafting table, so three more are needed.

Since the onion storage room and the crafting table are in two separate

↪→ rooms, we need one chef to carry three onions from the onion storage

↪→ room to the shared bar and another chef to carry three onions from

↪→ the shared bar to the crafting table.

Now there are no onions on the shared bar, and each chef can only carry one

↪→ onion at a time, so the two sub-goals by operating valid elements

↪→ are:

1. one chef takes an onion from the onion storage room and transports it to

↪→ the shared bar;

2. one chef goes to the bar and waits.

Listing 11: Instruction for Subgoal Allocation

You are a goal assigner playing a game.

In this game, two restaurant players (i.e., chefs) serve onion soup.

This game aims to serve as many orders as possible before the end of time.

Your task is to assign two current sub-goals to each player one-to-one

↪→ according to the current status of the game and two chefs.

You only can assign one of two current sub-goals to chefs.

Listing 12: One-shot Example and Chain-of-Thought Prompting for Subgoal Allocation

The two current sub-goals:

1. one chef takes an onion from the onion storage room and transports it to

↪→ the shared bar;

2. one chef transports an onion from the shared bar to the crafting table.

The current status of the game:
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one crafting table is making onion soups, two onions are on the other

↪→ crafting table, and one onion is on the shared bar.

The current status of the two chefs: Chef A is idle in the left room; Chef

↪→ B is idle in the right room.

To allocate sub-goals reasonably and efficiently, let us think step by step

↪→ :

the current two sub-goals are one chef takes an onion from the onion

↪→ storage room and transports it to the shared bar, and one chef

↪→ transports an onion from the shared bar to the crafting table.

We can assign two sub-goals to the two chefs since they are both idle.

Note that the onion storage room is in the left room, where Chef A is, so

↪→ only Chef A can take the onion.

Similarly, the crafting tables are in the right room, where Chef B is

↪→ located, so only Chef B can access the crafting table and transport

↪→ the onion from the shared bar to the crafting table.

Therefore, the result of the two current sub-goals assignment is as follows

↪→ :

Chef A: one chef takes an onion from the onion storage room and transports

↪→ it to the shared bar;

Chef B: one chef transports an onion from the shared bar to the crafting

↪→ table.

Listing 13: Instruction for Self-reflection

As a decision inspector, you are playing a game where two restaurant

↪→ players (chefs) are serving onion soup, with the intention of

↪→ fulfilling as many orders as possible before the time runs out.

In order to win and fulfill the most orders before time runs out, the game

↪→ includes two phases: goal generation and decomposition, and sub-goal

↪→ allocation.

The goal generation and decomposition personnel will first provide the goal

↪→ that needs to be accomplished according to the current situation,

↪→ and then break it down into two sub-goals so that the two chefs can

↪→ complete it separately.

The sub-goal allocation personnel’s job is to assign the two sub-goals to

↪→ each player based on the current state of the game and the two chefs’

↪→ abilities, and he/she can only assign one of the two sub-goals to

↪→ each chef.

Valid phase: goal generation and decomposition, subgoal assignment.
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You, as the decision inspector, only intervene when either the goal

↪→ generation and decomposition personnel, or the sub-goal allocation

↪→ personnel make mistakes.

Your job consists of two parts.

Firstly, judging whether it is the goal generation and decomposition

↪→ personnel or the sub-goal allocation personnel who made the mistake

↪→ based on the current state of the game.

You can only choose from the valid phases.

The second part is taking over the role of the person who made the mistake

↪→ and re-generating and decomposing the goal, or reallocating the sub-

↪→ goal after identifying the mistake.

Of course, you may also make errors in judgment, which means that the whole

↪→ process may go through multiple rounds, and you need to consider

↪→ the previous decision-making information.

Listing 14: One-shot Example and Chain-of-Thought Prompting for Step 1

The current situation is: there are no onions on the crafting table and

↪→ shared bar.

The generated goal from the goal generation and decomposition personnel is:

↪→ making onion soup.

The decomposed two sub-goals from the goal generation and decomposition

↪→ personnel are: one chef takes an onion from the onion storage room

↪→ and transports it to the shared bar; one chef transports an onion

↪→ from the shared bar to the crafting table.

The current status of the game: there are no onions on the crafting table

↪→ and shared bar.

The current status of the two chefs: Chef A is idle in the left room; Chef

↪→ B is idle in the right room.

The result of the two current sub-goals assignment decided by the sub-goal

↪→ allocation personnel is as follows: Chef A: one chef takes an onion

↪→ from the onion storage room and transports it to the shared bar;

↪→ Chef B: one chef transports an onion from the shared bar to the

↪→ crafting table.

The failed decision inspection history: None.

To determine whether any errors occurred during the phase of goal

↪→ generation and decomposition, or during the subgoal allocation stage,

↪→ let us think step by step.

Firstly, we will concentrate on the goal generation and decomposition phase.

↪→
Given that there are currently no onions available on the crafting table

↪→ and shared bar, but in order to fulfill as many orders as possible,

↪→ the goal at present is to create onion soup.

Hence, there seems to be no issue with goal generation.
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In the next step, we must subdivide the above goal into two sub-goals.

The two sub-goals that have been developed currently are: one chef obtains

↪→ an onion from the onion storage room and transports it to the shared

↪→ bar; and another chef reads an onion from the shared bar and

↪→ transports it to the crafting table.

Since there are presently no onions on the shared bar, one chef must obtain

↪→ them from the onion storage room before any other chef can

↪→ transport them from the shared bar to the crafting table.

Nonetheless, the two sub-goals have been initiated simultaneously, which

↪→ means that the second sub-goal, that is, one chef transporting an

↪→ onion from the shared bar to the crafting table, cannot be completed.

↪→
Based on the above analysis, it appears that the problematic stage is: goal

↪→ generation and decomposition.

Listing 15: One-shot Example and Chain-of-Thought Prompting for Step 2

[For Goal Generation and Decomposition Phase]

Previous failed goals: None.

Previous failed sub-goals: one chef takes an onion from the onion storage

↪→ room and transports it to the shared bar; one chef transports an

↪→ onion from the shared bar to the crafting table.

For more reasonable goal generation and decomposition, the goals you

↪→ generate or the sub-goals you decompose should no longer be

↪→ consistent with previously failed goals or sub-goals.

[Similar with instructions for goal generation and decomposition]

---

[For Subgoal Allocation Phase]

Previous failed subgoal assignments: Chef A: one chef takes an onion from

↪→ the onion storage room and transports it to the shared bar; Chef B:

↪→ one chef transports an onion from the shared bar to the crafting

↪→ table.

For more reasonable subgoal assignment, the assignment you make should no

↪→ longer be consistent with previously failed subgoal assignments.

[Similar with instructions for subgoal allocation]
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F.6.2 MiniRTS

MiniRTS furnishes an array of built-in script AIs, and we choose the medium-level AI as the
opponent to facilitate expeditious prompt design for PLMs. Initially, this script dispatches
all three available peasants to mine the nearest resource unit. It then randomly selects
one of the seven army unit types, determining an army size n ranging between 3 and 7. A
building unit corresponding to the selected army is constructed, followed by training n units
of the elected army category for deployment in attacks. The script perpetuates army unit
training, maintaining an army size of n.

Given that the built-in script AI constructs only two army unit types per game, we
establish an oracle prompt design strategy following the ground truth of enemy units and
the attack graph (Figure 9), similar with (Xu et al., 2022). In the game’s nascent stages,
the PLM instructs the agent to construct suitable army units progressively according to
following prompts.

Listing 16: Instructions for Goal Decomposition and Allocation

As a player of a MiniRTS game, your objective is to strategically construct

↪→ units that can effectively attack and defeat the AI.

To build a unit, you must follow specific procedures:

1. Secure adequate resources.

If the current resources are insufficient, then resources must be

↪→ collected.

2. Generate the unit if sufficient resources are available and there is a

↪→ building that can produce the unit.

If there isn’t such a building, construct it first, then proceed to

↪→ generate the unit.

Your responsibility is to focus on constructing the appropriate units,

↪→ without concerning yourself with how to operate them for an attack

↪→ on the AI. To defeat the AI as swiftly as possible.

Valid sub-goals: mine with all idle peasant, build one [building name],

↪→ build [number] [unit name]

Your task is to select the most viable two sub-goals, relative to the

↪→ current situation, from valid sub-goals so that the two agents can

↪→ complete it separately.

You may substitute the [building name] field in valid sub-goals with the

↪→ corresponding building name as it appears in the game, replace [unit

↪→ name] with the name of the unit in the game, and [number] with a

↪→ numeric value representing the desired quantity.

Kindly note that the maximum number of each building cannot exceed 1 and

↪→ likewise the maximum number of each type of unit cannot exceed 6.

Listing 17: Few-shot Chain-of-Thought Examples for Goal Decomposition and Allocation
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The current situation is: The enemy has 5 swordman and 7 catapult; our side

↪→ has 3 spearman, 1 barrack building, 2 peasant, sufficient resources.

↪→ . .

To formulate sub-goals, let us think step by step:

To overcome the enemy’s weaponry, our forces must produce superior arms

↪→ that are based on attacking dynamics.

Firstly, the opposition possesses 5 swordsmen, which can be bested by

↪→ cavalry units.

Unfortunately, we do not currently have this unit available, so it is

↪→ imperative that we construct the stable building in order to produce

↪→ cavalry.

Fortunately, we presently have ample resources to build the stable, thus it

↪→ is imperative that we prioritize this subgoal.

Additionally, the enemy’s artillery includes 7 catapults, which can be

↪→ countered by all other types of units.

With 3 spearman units available to us, we are equipped to restrain enemy

↪→ catapults.

However, we require additional forces to match the enemy’s 7 artillery

↪→ units.

To achieve combat parity, we must procure 7-3=4 additional spearman units.

Luckily, we already have a barracks building to generate spearman and with

↪→ our current resources, we can readily construct the required 4 units.

↪→

So the current two sub-goals select from valid sub-goals are: build one

↪→ stable, and build 4 spearman.

---

The current situation is: The enemy has 7 catapult; our side has 3 spearman

↪→ , 1 barrack building, 2 peasant, sufficient resources. . .

To formulate sub-goals, let us think step by step:

To overcome the enemy’s weaponry, our forces must produce superior arms

↪→ that are based on attacking dynamics.

Firstly, the enemy’s artillery includes 7 catapults, which can be countered

↪→ by all other types of units.

With 3 spearman units available to us, we are equipped to restrain enemy

↪→ catapults.

However, we require additional forces to match the enemy’s 7 artillery

↪→ units.

To achieve combat parity, we must procure 7-3=4 additional spearman units.
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Luckily, we already have a barracks building to generate spearman and with

↪→ our current resources, we can readily construct the required 4 units.

↪→
The aforementioned subgoal can be achieved by a single agent, and there are

↪→ no other enemy units to be vanquished.

To avoid leaving another agent idle, our second subgoal could be deemed

↪→ more extensive in scope.

To swiftly counter the enemy’s strategy, ample resources must be at our

↪→ disposal.

As it stands, our force consists of two peasant, hence the second sub-goal

↪→ entails having these peasant gather resources.

So the current two sub-goals select from valid sub-goals are: build 4

↪→ spearman, and mine with all idle peasant.

Listing 18: Instructions for Self-Reflection

As an arbiter of decisions, you partake in a competition that comprises of

↪→ two opposing factions - a user-directed regiment adherent to

↪→ predetermined principles and an AI adversary.

Through this competition, participants oversee the resource gathering,

↪→ facility maintenance, and obliteration of adversary forces to either

↪→ demolish their stronghold or vanquish all opposition on the

↪→ battleground.

To emerge victorious and conquer all opposition, the game must incorporate

↪→ personnel responsible for goal decomposition.

These individuals will select the two most viable sub-goals, based on the

↪→ current situation, from a pool of valid sub-goals for the two agents

↪→ to accomplish separately.

As the decision inspector, you only intervene when the goal decomposition

↪→ personnel make mistakes.

Your role is to assume responsibility for the goal decomposition.

However, even you may err in judgement, necessitating multiple rounds of

↪→ refinement while considering previous goal decomposition information.

↪→

Listing 19: Few-shot Examples and Chain-of-Thought Prompting for Self-Reflection

The current situation is: The enemy has 5 swordman and 7 catapult; our side

↪→ has 3 spearman, 1 barrack building, 2 peasant, sufficient resources.

↪→ . .

The generated sub-goals goal from the goal decomposition personnel is:

↪→ build one barrack, and build 4 spearman.

The failed decision inspection history: None.

36



To determine what errors occurred during the phase of goal decomposition,

↪→ let us think step by step:

According to the task manual, only one building of each type is allowed in

↪→ the game.

As we already have a barracks on our side, it is not possible to construct

↪→ another one.

Therefore, the current subgoal instruction of ‘‘build one barrack’’ is

↪→ incorrect and must be regenerated.

[Continue appending the following]

Previous failed sub-goals: build one barrack

For more reasonable goal decomposition, the sub-goals you generate should

↪→ no longer be consistent with previously failed sub-goals.

[The following is similar with instructions for goal decomposition and

↪→ allocation]

Appendix G. Missing PLM Outputs

Listing 20: Some Translated (Environment and Agent) States in Overcooked

1. Both crafting tables are making onion soups, and there is one plate on

↪→ the shared bar.

2. There are three onions on one crafting table, one onion on the shared

↪→ bar, and one plate on the sideboard.

3. One onion is on the shared bar, and there are no onions or plates on

↪→ either of the crafting tables or the serving counter.

4. Two completed onion soups are on one crafting table, and three onions

↪→ are on the other crafting table.

5. One chef is holding an onion, and the other chef is holding a plate,

↪→ with one onion on one crafting table and two onions on the other

↪→ crafting table.

6. Both crafting tables have three onions each, and both chefs are holding

↪→ a plate.

7. One crafted onion soup is on the shared bar, waiting for a chef to serve

↪→ it on a plate, and the other crafting table has two onions.

8. Two onions are on one crafting table, one onion is on the shared bar,

↪→ and a completed onion soup is on a plate on the serving counter.

9. One chef is holding an onion, one onion is on the shared bar, and both

↪→ crafting tables have two onions each.

10. A crafted onion soup is on a plate on one crafting table, while the

↪→ other crafting table is making onion soup with three onions on it.

37



Listing 21: Some Translated (Environment and Agent) States in MiniRTS

1. The enemy has 4 swordman and 3 cavalry; our side has 2 archer, 1

↪→ workshop building, 1 peasant, limited resources.

2. The enemy has 2 dragon and 5 spearman; our side has 3 archer, 1 stable

↪→ building, 2 peasant, sufficient resources.

3. The enemy has 6 spearmen and 1 dragon; our side has 4 cavalry, 1

↪→ blacksmith building, 2 peasant, limited resources.

4. The enemy has 3 dragon and 4 archer; our side has 5 peasant, 1 town hall

↪→ building, limited resources.

5. The enemy has 2 cavalry and 3 catapult; our side has 1 guard tower, 1

↪→ stable building, 3 peasant, sufficient resources.

6. The enemy has 3 archer and 4 swordman; our side has 4 spearman, 1

↪→ blacksmith building, 1 peasant, limited resources.

7. The enemy has 1 dragon, 4 spearman, and 2 catapult; our side has 2

↪→ archer, 1 workshop building, 2 peasant, sufficient resources.

8. The enemy has 4 cavalry and 3 swordman; our side has 4 spearmen, 1

↪→ barrack building, 1 peasant, limited resources.

9. The enemy has 2 archer, 3 spearman, and 1 dragon; our side has 1 guard

↪→ tower, 1 stable building, 1 peasant, sufficient resources.

10. The enemy has 5 spearmen and 2 swordman; our side has 3 peasant, 1 town

↪→ hall building, limited resources.

Listing 22: Some Generated Goals in Overcooked

1. Create onion soup.

2. Deliver onion soup to counter.

3. Cook onion soup.

4. Complete onion soup making process.

5. Prepare onion soup.

6. Serve onion soup.

7. Make onion soup.

8. Transfer onion soup to counter.

9. Craft onion soup.

10. Serve cooked soup to customers.

Listing 23: Some Generated Sub-Goals in Overcooked

1. one chef takes an onion from the onion storage room and transports it to

↪→ the shared bar;

2. one chef goes to the bar and waits.

3. Another chef picks up the onion from the shared bar and places it on the

↪→ crafting table;

4. The second chef returns to the onion storage room to get another onion;
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5. One chef takes a plate from the sideboard and transports it to the

↪→ shared bar;

6. The other chef picks up the plate from the shared bar and sets it down

↪→ next to the crafting table;

7. A chef takes the second onion from the onion storage room and brings it

↪→ to the shared bar;

8. The other chef collects the second onion from the shared bar and places

↪→ it on the crafting table;

9. The first chef retrieves the third onion from the onion storage room and

↪→ delivers it to the shared bar;

10. The other chef obtains the third onion from the shared bar and places

↪→ it on the crafting table, triggering the crafting process;

11. One chef goes to the shared bar and waits for the onion soup to finish;

12. The second chef picks up the plate from the sideboard and brings it to

↪→ the shared bar;

13. The other chef collects the plate from the shared bar and places it

↪→ near the crafting table;

14. One chef moves to the crafting table and waits for the onion soup to

↪→ finish;

15. The first chef takes the completed onion soup from the crafting table

↪→ and sets it on the plate;

16. A chef transports the plated onion soup from the crafting table to the

↪→ serving counter;

17. The other chef retrieves another onion from the onion storage room and

↪→ brings it to the shared bar;

18. One chef picks up the onion from the shared bar and places it on the

↪→ second crafting table;

19. A chef takes an onion from the onion storage room and places it on the

↪→ shared bar;

20. The second chef picks up the onion from the shared bar and places it on

↪→ the second crafting table.

Listing 24: Some Generated Goals in MiniRTS

1. mine with all idle peasant

2. build one guard tower

3. build one blacksmith

4. build one barrack

5. build one stable

6. build one workshop

7. build 3 cavalry

8. build 2 catapult

9. build 5 archer

10. build 4 swordman
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Listing 25: Reward Function Snippet for “make onion soup”

if num_onions < 0:

return 0

if num_onions > Recipe.MAX_NUM_INGREDIENTS:

return 0

if cooking_tick >= 0 and num_onions == 0:

return 0

if finished and num_onions == 0:

return 0

if finished:

return 1

Listing 26: Reward Function Snippet for “place one onion on the crafting table”

if not ingredient.name in Recipe.ALL_INGREDIENTS:

return 0

if self.is_full:

return 0

else:

return 1

Listing 27: Reward Function Snippet for “build [#number] [unit name]”

build_type = build_cmd[’target_type’]

for my_unit in current[’my_units’]:

unit_type = my_unit[’unit_type’]

if unit_type != build_type:

continue

new_unit = True

unit_id = my_unit[’unit_id’]

for prev_unit in previous[’my_units’]:

if unit_id == prev_unit[’unit_id’]:

new_unit = False

if new_unit:

return 1

return 0

G.1 Environments

This section mainly wants to verify two points: first, whether SAMA can handle tasks with
more agents; second, whether SAMA can handle tasks where human common sense plays
little role.
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Figure 13: Left: the average performance of different PLM-based task planner in all tasks in
Overcooked. Middle: the average win rate of different PLM-based task planner in MiniRTS.
Right: the average win rate of SAMA in MiniRTS with different number of agents.

For the first point, since there are currently few environments in MARL that can better
adapt to language models and be solved by human commonsense like Overcooked or MiniRTS,
we made simple modifications to the latter to enable it to accommodate more agents at
the same time. Similar to modifying the environment from a single-agent to a 2-agents
environment, we can also use a similar method to extend it to N agents. Here we set N to 3.
Specifically, 3 agents emerge in the modified environment, each governing 1/3 of the units.
Analogously, we also modestly modified the built-in medium-level AI script, enabling the
random selection of 3 types of army units in each iteration. Given that the built-in script AI
constructs only 3 army unit types per game, we establish an oracle prompt design strategy
following the ground truth of enemy units and the attack graph.

When the number of agents is larger, feasible plans will grow exponentially as the task
horizon increases, which will be more challenging for current PLM. As can be seen from
Figure 13, the performance of SAMA does not drop significantly in scenarios with more
agents. This shows that the SAMA framework itself has certain scalability.

Figure 14: Left: The map of multi-agent version FrozenLake task.. Right: the average
success rate of different PLM-based task planner in multi-agent version FrozenLake.

For the second point, we have modified the classic FrozenLake environment12 in OpenAI
Gym and expanded it into a task for two agents, which can be regarded as a discrete version
of the Spread task in MPE13. In this task, two agents need to avoid holes in the ice and
each reach a target location (Figure 14 Left). The difficulty with this task is that each

12. https://gymnasium.farama.org/environments/toy_text/frozen_lake/.
13. https://github.com/openai/multiagent-particle-envs.
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agent’s observation space contains only integers representing its own coordinates and those
of another agent. Other than that, it contains no information and can only be remembered
through continuous exploration to remember all possible situations. In this case, human
commonsense cannot give the optimal planning in advance.

We verify the performance of SAMA and other PLM-based task planners (see details
below) on the multi-agent version FrozenLake. Figure 14 (Right) shows the average rewards
of different algorithms over 20 episodes of the game. Note that FrozenLake is a sparse
reward task, and there is a +1 reward only when the agent reaches the target point. As
can be seen from the figure, the PLM-based task planner we selected, including SAMA, is
unable to solve this type of problem. How we empower PLM to solve such tasks will be left
to further exploration later.

G.2 Baselines

In this section, we additionally compare the performance of other PLM-based task planners
on Overcooked and MiniRTS. Specifically, we selected two algorithms, DEPS (Wang et al.,
2023) and Plan4MC (Yuan et al., 2023), to compare with SAMA. The reason is that both
algorithms require planning based on existing goal or skill sets. SAMA needs to generate a
diverse set of goals in the language-grounded RL pre-training stage, so it is very suitable to
replace the SAMA process with DEPS or Plan4MC.

Specifically, DEPS generates an entire goal sequence at the beginning of the task. Then
the reflection mechanism is used to adjust the goal sequence based on the policy execution
results. Plan4MC will determine the goal to be generated by searching on the pre-constructed
skill graph at each round of goal generation, and SAMA also adopt this paradigm. It is worth
noting that both baselines are designed for single-agent tasks (i.e. Minecraft). Therefore, for
a fair comparison, we use the goal decomposition in SAMA and subsequent processes after
goal generation in DEPS or Plan4MC. In other words, we only replace the goal generation
procedure in SAMA with DEPS or Plan4MC.

As can be seen from Figure 13 (Left and Middle), DEPS needs to generate an entire goal
sequence at one time, which greatly increases the chance of PLM making mistakes, resulting
in a performance degradation compared to SAMA. Plan4MC generates goal round-by-round
and introduces graph search technology, so it has a slight performance improvement compared
to SAMA. But it is worth noting that in SAMA’s framework, goal generation is only one of
many modules.

Appendix H. Missing Ablation Studies

Is the learned policy grounded? Observe that Figure 4 (Right) and Figure 6 (Right)
have already furnished ample evidence supporting the command-following performance of
the SAMA policy, as the attained rewards and win rates proximate to SOTA methods can
solely be accomplished by adhering to the Oracle commands. Consequently, we introduce
an ancillary metric, a modification of the criterion postulated by RED: intrinsically, as a
command-following policy, its reward or win rate ought to diminish if it receives “inferior”
commands; conversely, if the reward or win rate remains stable, the policy must inadequately
adhere to the commands. Thus, we interpolate between the PLM-generated subgoal and the
wholly random subgoal, subsequently evaluating disparate policies’ reward and win rates
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Figure 15: Left: Rewards per episode and win rates with an increasing amount of random
commands. Right: Effect of different number of self-reflection trials on performance. “0
trial” means no self-reflection. Generally, only more than 1 trial can bring about significant
performance improvement.

with varying proportions of random commands. The outcomes are delineated in Figure 15.
The findings corroborate our preliminary analysis.

Does self-reflection prove advantageous? To ascertain whether the self-reflection
stimulates PLMs to rectify logical or factual inaccuracies they commit during semantically
aligned goal generation, decomposition, and allocation, we examined the efficacy of SAMA
incorporating diverse quantities of self-reflection trials. Gleaning from Figure 15 (Right),
we garner two notable observations: (1) The self-reflection mechanism engenders a marked
enhancement in performance; (2) In most instances, exceeding a single self-reflection trial
elicits a conspicuous elevation in performance.

Figure 16: Left: the average performance of different ablations in all tasks in Overcooked.
Right: the average win rate of different ablations in MiniRTS.

43



Do different versions of GPT have a big impact on performance? We tested the
average performance of GPT-3.5 and GPT-4 on all tasks in two environments, as shown in
the Figure 16. The vertical axis shows the percentage of different algorithms compared to
SAMA. As can be seen from the figure, there is a huge gap in performance between GPT-3.5
and GPT-4 (default in SAMA). The poorer performance of GPT-3.5 is also consistent with
some existing findings (Chen et al., 2023a).

Can PLM design high-quality reward functions? When pre-training language-
grounded MARL agents, intrinsic rewards need to be designed to indicate whether the
sub-goal is completed. Since the state fed back by Overcooked and the MiniRTS environment
contains high-level semantic information, it is easy for humans to write a judgment function
for whether the corresponding sub-goal is completed. For example, in Overcooked, you can
directly read from the state whether there are onions on the cooking table, how many onions
there are, etc.; in MiniRTS, you can also read from the state the type and quantity of the
currently manufactured building or army. Then we can use a manually designed reward
function to evaluate the performance of the reward function automatically generated by
PLM. As can be seen from Figure 16, in the Overcooked environment, the reward function
automatically generated by PLM is slightly weaker than the manual design; but it shows
comparable performance in MiniRTS. A simple analysis shows that the latter sub-goals are
easier to understand by PLM, such as confirming the type of building, type of army and
number of troops built. The former sub-goal requires a certain level of understanding. For
example, for the sub-goal of “putting onions from the storage room to the cooking table”,
the storage room is actually meaningless. The key is to detect whether there is an extra
onion on the cooking table. And here it’s no longer a simple counting task, but a comparison
with the number of onions currently on the cooking table.

Does the extraction of interactive objects effectively limit the goal space gen-
erated by PLM and further improve performance? We tested not performing the
preprocessing step of interactive objects extraction during the goal generation, decomposition
and subgoal assignment phase, but directly prompting PLM to generate goals and subgoals
according to the task manual. As can be seen from the Figure 16, this brings a significant
performance degradation. The fundamental reason is that unbounded goal space causes
language input to contain a large amount of redundant information, which greatly affects
the pre-training and performance of language-grounded policy. Poor language-grounded
policy ultimately leads to reduced task completion.

Can more hand-designed few-shot examples improve performance? Few-shot,
or in-context examples, are considered critical to improving PLM performance. But more
examples mean more labor costs and worse generalization capabilities. We evaluate the
performance of the algorithm with 1 and 3 few-shot examples in all sessions that require
prompt PLM. As can be seen from Figure 16, more few-shot examples will not bring
performance improvements in all tasks. Considering the balance between performance and
cost, 1-shot example is used as the default setting in SAMA.

Appendix I. Societal Impact

Though PLMs priors have demonstrated remarkable common-sense aptitudes, it is widely
recognized that these models exhibit significant susceptibility to detrimental social prejudices
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and stereotypes (Bender et al., 2021; Abid et al., 2021; Nadeem et al., 2021). When
employing such models as goal generators, decomposers, and allocators within the MARL
context, as SAMA exemplifies, it is imperative to thoroughly comprehend and counteract
any potential adverse manifestations engendered by these biases. While our investigation is
centered upon simulated environments and tasks, we assert the necessity for more rigorous
examination if such systems were to be implemented in pursuit of open-ended learning within
real-world settings, such as autonomous driving, multi-agent pathfinding, cloud computing,
etc. Potential ameliorative approaches specific to SAMA could encompass (Du et al., 2023):
the proactive screening of PLM generations to eradicate defamatory content prior to their
utilization as generated sub-goals, prompting the PLM with directives concerning the nature
of goals or sub-goals to generate and/or the exclusive employment of the closed-form SAMA
variant accompanied by meticulously confined goal and subgoal spaces.
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mitrescu. Towards defining role models in advanced systems engineering. In ISSE,
2020.

Zhaohan Guo, Shantanu Thakoor, Miruna P̂ıslar, Bernardo Avila Pires, Florent Altché,
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