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Structured Cooperative Reinforcement Learning
with Time-varying Composite Action Space

Wenhao Li, Xiangfeng Wang, Bo Jin, Dijun Luo, and Hongyuan Zha

Abstract—In recent years, reinforcement learning has achieved excellent results in low-dimensional static action spaces such as
games and simple robotics. However, the action space is usually composite, composed of multiple sub-action with different functions,
and time-varying for practical tasks. The existing sub-actions might be temporarily invalid due to the external environment, while
unseen sub-actions can be added to the current system. To solve the robustness and transferability problems in time-varying
composite action spaces, we propose a structured cooperative reinforcement learning algorithm based on the centralized critic and
decentralized actor framework, called SCORE. We model the single-agent problem with composite action space as a fully cooperative
partially observable stochastic game and further employ a graph attention network to capture the dependencies between
heterogeneous sub-actions. To promote tighter cooperation between the decomposed heterogeneous agents, SCORE introduces a
hierarchical variational autoencoder, which maps the heterogeneous sub-action space into a common latent action space. We also
incorporate an implicit credit assignment structure into the SCORE to overcome the multi-agent credit assignment problem in the fully
cooperative partially observable stochastic game. Performance experiments on the proof-of-concept task and precision agriculture task
show that SCORE has significant advantages in robustness and transferability for time-varying composite action space.

Index Terms—Cooperative Multi-Agent Reinforcement Learning, Composite Action Space, Time-varying Action Space.

✦

1 INTRODUCTION

IN recent years, deep reinforcement learning (DRL) has
been successfully applied to many fields like computer

games [1, 2], simple robotic control [3, 4], autonomous
vehicles [5], image processing [6, 7], etc. In general, the
action spaces of these applications are static and homoge-
neous, while very few are heterogeneous but with a simple
structure. For example, in Atari games [8], the action spaces
mostly only include moving up/down/left/right, plus fir-
ing and jumping; in simple robot control tasks, all robot
joints are homogeneous and controlled by a fixed-length
parameter vector; in image processing tasks, actions are gen-
erally defined as pixel-wise value changing, homogeneous
for all pixels in the image. Besides, the action spaces of the
above tasks are all static, predefined, and will not change
with the execution of the task.

However, for many realistic tasks, the action spaces are
usually time-varying and composite. The time-varying means
the action space will change over time, and the composite
means there are multiple heterogeneous sub-action spaces
with different function, as shown in Figure 1. For instance,
in the precision agriculture problem, on the one hand, the
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agent (control center) needs to determine the composite
actions of the greenhouse, including temperature, humidity,
light intensity, carbon dioxide concentration, etc. Differ-
ent physical controllers control these heterogeneous sub-
actions. As a result, the dimensions of these sub-actions
controllable parameters and the types of sub-action values
(continuous or discrete values) may be different. On the
other hand, some controllers will be temporarily invalid
in the actual deployment due to poor communication net-
works, device aging, abnormal weather, or sudden natural
disasters. Also, with the iteratively updating of the intelli-
gent greenhouse, new controllers will gradually be added to
the precision agriculture task. The increasing or decreasing
of the controllers are common in real-world scenes, which
leads to the time-varying and composite action space in
the corresponding RL problem. In addition to precision
agriculture scenarios, such action spaces are also widely
arisen in complex robot control, industrial production, and
drone planning. The various modules of modular robots, the
robot arms in the automated assembly line, and the drones
with different functions exhibit prominent composable and
time-varying characteristics of the action space.

To the best of our knowledge, few works can handle
time-varying and composite action space simultaneously.
Some early works [9, 10, 11] modeled the composite action
space problem as a general high-dimensional action selec-
tion problem. However, they usually ignore the heterogene-
ity of the action space. Zhang et al. [12] proposed an LSTM-
based autoregressive structure to learn in the composite
action space, in which the LSTM structure requires prede-
fined dependencies between heterogeneous actions. Further,
the parameterized action space problem can be regarded
as a particular case of the composite action space problem,
while the number of sub-action spaces equals one. A series
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Fig. 1. The conceptual diagram of time-varying composite action space and structured cooperative reinforcement learning algorithm (SCORE). Left:
The single-agent problem with time-varying composite sub-action space. Sub-action spaces with different functions are generally heterogeneous,
with different semantics and data structures. For example, the four functional sub-action spaces in the figure are one-dimensional continuous space,
one-dimensional discrete space, two-dimensional continuous space, and a mixed space of one-dimensional continuous space and one-dimensional
discrete space. At each time step, the agent needs to determine all sub-actions based on the policy jointly. Right: The homogeneous multi-agent
problem with the variable number of agents after decomposition. Different sub-action spaces are considered independently and regarded as agents.
All agents have the same local observations and shared team rewards. This paper proposes the SCORE algorithm based on graph attention network
(GAT) and hierarchical variational autoencoder (HVAE) to solve this multi-agent problem. After decomposing the composite actions, HVAE maps
the sub-action spaces with different functions to the common latent space into a more straightforward homogeneity problem. At the same time, GAT
is used to deal with the variable number of agents and to capture the dependencies between sub-action spaces with different functions.

of works for parameterized action space problems are dis-
cussed in recent years [13, 14, 15, 16]. However, all the works
mentioned above only consider the static action spaces.
There also are some recent works focus on transferring rein-
forcement learning to unseen actions [17, 18, 19, 20, 21, 22].
In these works, the number of sub-action spaces is assumed
to be one. As a result, transfer learning can be achieved
by directly measuring the similarity between actions or
capturing the structure of the action spaces. However, simi-
larity measuring and structure capturing become extremely
difficult for tasks with composite action spaces, such as
precision agriculture. Specifically, it is impractical to apply
the above ideas to the composite action space directly.
Naturally, sub-action spaces with different functions in the
composite action space have mutual influences, which bring
new challenges to transfer to unseen actions.

In this paper, decoupling is introduced as the core idea
to solve the time-varying composite action space problem.
We model the single-agent reinforcement learning prob-
lem with time-varying composite action space as a fully
cooperative partially observable stochastic game (POSG)
with variable number of agents and propose the Structured
COoperation REinforcement Learning (SCORE) algorithm.
The sub-action space of each function is regarded as an
independent agent1. SCORE adopts the centralized critic
and decentralized actor (CCDA) framework [23] and in-
troduces the graph neural network (GNN) as the central
critic. However, the environment nonstationarity problem
is introduced when we consider the sub-action space of

1. In this paper, we will no longer distinguish between the two
concepts of sub-action space and agent.

Fig. 2. We choose the tomato planting task to show the dependence
between different sub-action spaces in the precision agriculture scene.
Left: The tomato planting task contains four sub-action spaces with
different functions, from top to bottom: temperature, light, irrigation, and
carbon dioxide. Middle: As the carbon dioxide concentration and tem-
perature increase, the activity of crop enzymes will increase, which will
increase crop yields. If the temperature drops while the carbon dioxide
concentration increases, it will reduce the enzyme activity and reduce
the crop yield. Right: To increase crop yield, the correlation constraint
between the carbon dioxide sub-action space and the illumination sub-
action space should be positive.

each function independently. More critically, this will ig-
nore the dependency between different sub-action spaces.
For example, in the precision agriculture task, when the
temperature rises, enzyme activity also increases; if the
light intensity is increased simultaneously, the intensity of
photosynthesis will get increased and promote the growth
of crops (see Figure 2 for intuitive explanation). If we can
explicitly model these dependencies, the multi-agent system
can explore more efficiently, which will improve the final
algorithm performance [24]. Based on this idea, SCORE
first introduced the hierarchical variational autoencoder
(HVAE)) [25] to map the sub-action space of each function to
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a common latent action space; the attention mechanism [26]
is then introduced to the centralized critics based on GNN
to form a graph attention network (GAT) [27] based CCDA
framework. At this time, SCORE can model the correlation
between the sub-actions of each function projected to the
common latent space by using the attention weight. Finally,
modeling the time-varying composite action space problem
as a fully cooperative POSG will also introduce the multi-
agent credit assignment problem. For this reason, SCORE
additionally introduces an implicit credit assignment struc-
ture in the CCDA framework. The conceptual diagram is
shown in Figure 1, and the main contributions are summa-
rized as follows:

• We reformulate the single-agent reinforcement learn-
ing problem with time-varying composite action
space as a fully cooperative partially observable
stochastic game with the variable number of agents
and propose a novel graph-attention-network-based
MARL algorithm, SCORE.

• We incorporate the hierarchical variational autoen-
coder architecture into the MARL algorithm to better
capture the correlation between actions and improve
transferability to unseen sub-action space.

• We organically combine the implicit credit assign-
ment structure with the SCORE algorithm, which
effectively solves the multi-agent credit assignment
problem in fully cooperative POSG.

• Both the proof-of-concept task and experiments on
the agricultural simulator show that the proposed
SCORE algorithm can exceed the performance of the
baselines both in robustness and transferability in the
time-varying composite action space.

This paper is organized as follows. We introduce the
related works of composite action space, action relation-
ships, and unseen actions transfer learning in Section 2.
We provide the background material on cooperative POSG
and graph attention network in Section 3. We present our
structured cooperative reinforcement learning algorithms
(SCORE) in Section 4. Extensive experiments are presented
in Section 5, and we conclude this paper in Section 6.

2 RELATED WORKS

2.1 AI for Agriculture
The United Nations estimates that the world needs to feed
two billion additional people by 2050 [28], which presents
a significant challenge to the global agriculture capacity. To
improve agriculture is to address both today’s and tomor-
row’s problems. AI has lots of potential in this domain, and
we follow the agriculture supply chain to introduce these
works, similar as Shi et al. [29]. The progress and commer-
cialization of UAVs, satellite images, and IoT promoting the
so-called “precision agriculture”. With them, it is possible
to address the various aspects of crop management, such
as crop planning, maintenance, yield prediction, mitigating
crop disease, and agricultural information gathering Shi
et al. [29]. Lücken and Brunelli [30] uses multi-objective
evolutionary algorithms to determine the optimal crop to
grow based on the soil information. Other works explore
selecting the best time to sow based on additional factors

such as weather information [31]. Holman et al. [32] propose
using the Gaussian Process to estimate crop evapotranspira-
tion information with data from ordinary weather stations
for optimizing irrigation plans. You et al. [33] not only use
deep learning models to predict the crop yield from satellite
images to help farmer plan and the government determine
agriculture policy but also design a compact representation
to address the scarcity of labeled data. Quinn et al. [34]
propose several approaches to address problems related
to crop disease, including using Gaussian Process ordinal
regression to estimate disease distribution, using a model
for survey planning, etc. A mobile app based on Quinn et al.
[34] is now available [35]. Some works focus on agriculture
information gathering efficiency [33, 36] and price move-
ment prediction in agriculture produce market [37].

Crop planting is the first part of the agricultural sup-
ply chain. However, to the best of our knowledge, few
works directly control crop planting strategies, so-called
“fine-grained precision agriculture”. This paper models the
fine-grained precision agriculture problem as a single-agent
reinforcement learning problem with time-varying compos-
ite action space and proposes a robust and transferable
reinforcement learning algorithm SCORE. The simulated
experiment for the tomato planting task proves that it can
effectively promote crop growth.

2.2 Composite Action Space

Similar to the composite action space concept, the param-
eterized action space is a discrete action space with some
continuous parameters. One straightforward approach is
to discretize the continuous part of the action space di-
rectly and turn it into a sizeable discrete set (for example,
with the tile coding approach [38]). This trivial method
loses the advantages of continuous action space for fine-
grained control and often ends up with a vast discrete
action space. Another direction is to convert the discrete
action selection into a continuous space. Hausknecht and
Stone [39] used an actor-network to output a value for each
of the discrete actions, concatenated with all continuous
parameters, discrete action is chosen to be the one with
the maximum output value. Masson et al. [13] focused on
learning an action-selection policy given fixed-parameter
selection and proposed the framework called Q-PAMDP,
which alternately learns the discrete action selection with
Q-learning and updated parameter-selection policies with
policy search methods. Wei et al. [14] proposed a hierarchi-
cal approach for RL in parameterized action space where
the parameter policy is conditioned on the discrete action
policy and used TRPO and Stochastic Value Gradient [40]
to train such an architecture. Xiong et al. [15] proposed
the parameterized deep Q-networks (P-DQN) algorithm. P-
DQN has one network to select the continuous parameters
for all discrete actions. Another network takes the state and
the chosen continuous parameters as input and outputs the
Q-values for all discrete actions.

There are only a few works focus on the composite action
space problem. Fan et al. [16] proposed an actor-critic-based
approach H-PPO, which consists of multiple parallel sub-
actor networks to decompose the structured action space
into simpler action spaces with a shared critic network to
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guide the training of all sub-actor networks. Zhang et al.
[12] proposed an LSTM-based auto-regressive structure to
learning in the composite action space. In each timestep,
each sub-action is determined by all previously decided
sub-actions. However, all the works mentioned above only
consider the static action spaces.

2.3 Learning Relationships Between Actions
He et al. [41] introduces a novel architecture for rein-
forcement learning with deep neural networks designed
to handle state and action spaces characterized by natural
language, as found in text-based games. Termed a deep re-
inforcement relevance network, the architecture represents
action and state spaces with separate embedding vectors,
which are combined with an interaction function to ap-
proximate the Q-function in reinforcement learning. Wang
and Yu [42] explores the multi-action relationship in rein-
forcement learning and proposes to learn the multi-action
relationship by enforcing a regularization term capturing
the relationship. They incorporate the regularization term
into the least-squared policy-iteration and the temporal-
difference methods, resulting in efficiently solvable convex
learning objectives. Tennenholtz and Mannor [43] intro-
duces a general framework for learning context-based action
representation. Representing actions in a vector space help
RL achieve better performance by grouping similar actions
and utilizing relationships between different actions. Kim
et al. [24] proposes an exploration method that constructs
embedding representation of states and actions that do not
rely on generative decoding of full observation but extracts
predictive signals that can guide exploration based on for-
warding prediction in the representation space. These works
only consider one sub-action space.

2.4 Generalize to Unseen Actions
For a time-varying action space, unseen actions will be
added to the previous action space in addition to some sub-
actions will get temporarily invalid. Jain et al. [20] proposes
a method for reinforcement learning with unseen actions.
The actions available during training (known actions) are a
subset of all the actions available during evaluation (known
and unknown actions). The method can choose unknown
actions during evaluation through an embedding space over
the actions, which defines a distance between actions. Far-
quhar et al. [17] uses a curriculum of progressively growing
action spaces to accelerate learning. This approach uses off-
policy RL to estimate optimal value functions for multiple
action spaces simultaneously and efficiently transfers data,
value estimation, and state representations from restricted
action spaces to the full task. Chen et al. [18] proposes
a transfer learning method to learn action embedding for
discrete actions in RL from generated trajectories without
prior knowledge and then leverage it to transfer policy
across tasks with different state spaces and/or different
discrete action space. Chandak et al. [21] presents a two-
stage algorithm to tackle the problem that the action set
whose size changes over time in lifelong learning. This
algorithm breaks the problem into two sub-problems that
can be solved iteratively: inferring the underlying, unknown
structure in the space of actions and optimizing a policy

that leverages this structure. Annie et al. [19], Fang et al.
[22] aims to solve the problem of learning a model that
can perform complex tasks and transfers to previously
unseen objects. Annie et al. [19] approaches this problem
by training a model with both a visual and physical under-
standing of multi-object interactions. They combine diverse
demonstration data with self-supervised interaction data,
aiming to leverage the interaction data to build transferable
models and the demonstration data to guide the model-
based RL planner to solve complex tasks. Fang et al. [22]
proposes a method to jointly optimize both the transferable
tool-choosing policy and the manipulation policy for the
chosen tool. The training process of the model is based
on large-scale simulated self-supervision with procedurally
generated tool objects. However, this part is the same as
the previous part, without considering the composite action
space. For composite action space, similarity measuring and
structure capturing become extremely difficult.

2.5 Multi-Agent Reinforcement Learning with Graph
Neural Network

Graph neural networks (GNNs) are influential in extract-
ing relations among entities and handling the variable
number of agents, with emerging applications in MARL.
RFM [44] designs an auxiliary action prediction task (predict
other agents’ actions) with graph networks [45], which can
help agents learn interpretable intermediate representations.
MAGNet [46] uses heuristic rules to learn the relevant graph
to help actors and critics learning. DGN [47] learns the
GCN together with the relation kernel by minimizing the
TD error, which can be applied to dynamic multi-agent
RL problems. HAMA [48] adopts a hierarchical graph at-
tention network based on a pre-defined hierarchical graph
to help agents capture interrelations. The pre-defined and
fixed group scheme used in HAMA limits its adaptability
in dynamic scenarios. PIC [49] introduce the graph neural
network into the MADDPG [50] algorithm to overcome the
permutation variant problem and propose an invariant per-
mutation critic, which yields identical output irrespective
of the agent permutation. To simplify the learning process
and get better asymptotic performance, GA-AC [51] model
the relationship between agents by a complete graph and
propose a novel game abstraction mechanism based on a
two-stage attention network and graph neural network.
Remarks. Although the above methods are not specifically
proposed to solve the variable number of agents, they can
naturally handle a variable number of agents due to the
characteristics of graph neural networks. However, in the
problems dealt with by these methods, agents are generally
homogeneous. Even if they are heterogeneous, they only
need to complete different tasks in the environment, and the
action space is the same. The above two cases allow these
methods to directly use graph neural networks to perform
end-to-end black-box optimization, which can learn the
correlation between agents. However, this does not apply
to heterogeneous sub-action spaces in the composite action
space. The heterogeneity of these sub-action spaces makes
it impossible to capture the correlation between them by
simply using graph neural network modeling. This requires
some additional representation learning techniques, such
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as the hierarchical variational autoencoder based on unsu-
pervised learning introduced by the SCORE algorithm. Al-
though the MARL methods mentioned above can handle the
variable number of agents, they cannot transfer to scenarios
with agents not seen during training. The SCORE algorithm
can quickly transfer to tasks with unseen sub-action spaces
through fine-tuning a small number of samples after the
algorithm is well-trained.

3 PRELIMINARIES

3.1 Fully Cooperative Partially Observable Stochastic
Game

Partially observable stochastic game (POSG) [52] is denoted
as a tuple based on Markov Game as follows:〈

X ,S,
{
Ai

}n
i=1

,
{
Oi

}n
i=1

,P, E ,
{
Ci
}n
i=1

〉
,

where n is the total number of agents; X represents the
agent space; S is a finite set of states; Ai is a finite action
set of agent i; A = A1 × A2 × · · · × An is the finite set
of joint actions; P(s′|s,a) is the Markovian state transition
probability function; Oi is a finite observation set of agent i;
O = O1 × O2 × · · · × On is the finite set of joint observa-
tions, E(o|s) is Markovian observation emission probability
function; Ci : S ×A × S → R denotes the cost function of
agent i.

The game in POSG unfolds over a finite or infinite
sequence of stages (or timesteps), where the number of
stages is called horizon. In this paper, we consider the finite
horizon problem. The objective for each agent is to minimize
the expected cumulative cost received during the game. For
a cooperative POSG, we quote the definition in [53],

∀x ∈ X ,∀x′ ∈ X\{x},∀πx ∈ Πx,∀πx′ ∈ Πx′ ,
∂Cx′

∂Cx
⩾ 0,

where x and x′ are a pair of agents in agent space X ; πx
and πx′ are the corresponding policies in the policy space
Πx and Πx′ separately. Intuitively, this definition means
that there is no conflict of interest for any pair of agents.
The most common example of cooperative POSG is the
fully cooperative POSG (also called decentralized partially
observable Markov decision process, Dec-POMDP), that all
the agents share the same global cost at each stage, and
C1 = C2 = · · · = Cn.

In this paper, we model the time-varying composite
action space problem as a fully cooperative POSG. Each
agent completes a common task based on the shared local
observation and reward function. Without loss of generality,
the optimization goal of the fully cooperative POSG prob-
lem is defined as follows

min
Ψ

n∑
i=1

T−1∑
t=0

Es∼dΨ,o∼E,a∼πΨ

[
cit+1

]
, (1)

where Ψ := {ψi}ni=1 denotes the parameters of the approx-
imated policy function of all agents and πΨ :=

∏n
i=1 π

i
ψi

represents the factorizable joint policy of all agents. Note dΨ
is the stationary state distribution with respect to πΨ.

3.2 Graph Neural Networks and Graph Attention Net-
works
Graph neural networks(GNNs) [54, 55] is the targeted neu-
ral network for graph data. Many machine learning prob-
lems are established with a natural graph structure, while
the GNNs have been broadly adopted. Many variants of
GNNs have been proposed, and we here take the popular
GraphNets [45] as the main framework. Graph data is often
defined as a tuple G = (u,V, E), where u denotes the global
attribute; V = {vi}i=1:Nv and E = {(ek, rk, sk)}k=1:Ne

denote the node feature set and the edge feature set (ek is the
edge feature; rk and sk are the receiver’s index and sender’s
index).

GraphNets treat GNNs as the combination of multiple
“graph network(GN)” blocks. The GN blocks contain three
updating and aggregation functions, which operate on dif-
ferent levels (node, edge, and global graph level). ρe→v ,
ρe→u, ρv→u are denoted as the aggregation functions for
“edge to node”, “edge to global” and “node to global”
respectively. Different from ē′ = ρe→u, v̄′ = ρv→u that
aggregate across all edges and nodes, ēi′ = ρe→u(E′

i)
aggregates the received/sent edges only for node i. For in-
variant input permutation, the aggregation function can be
mean, element-wise summation, attention, etc. The updat-
ing functions ϕe(ek, vrk , vsk , u), ϕ

v(ēi
′, vi, u), ϕu(ē′, v̄′, u)

update edges, nodes and global features respectively. The
typical GN blocks keep the following update scheme

ϕe → ρe→v → ϕv → ρe→u → ρv→u → ϕu.

The graph attention network (GAT) used in this paper is
a particular case of a graph neural network whose aggrega-
tion function is the attention operator:

x′
i = αi,iΘxi +

∑
j∈N (i)

αi,jΘxj ,

where xi,j means arbitrary feature vector, Θ is a shared
weight matrix parameterizes a linear transformation, and
the attention coefficients αi,j are computed as:

αi,j =
exp

(
LeakyReLU

(
a⊤ [Θxi∥Θxj ]

))∑
k∈N (i)∪{i} exp (LeakyReLU (a⊤ [Θxi∥Θxk]))

.

4 THE SCORE ALGORITHMIC FRAMEWORK

In the following, we will propose our SCORE algorithm
formally. The SCORE algorithm can be considered as a two-
stage structure framework, i.e., action space representation
learning stage and robust and transferable policy learning stage.
The main idea of these two stages are summarized first, and
the detailed discussions are presented as follows:
1. Action space representations learning. We use an
unsupervised-representation-learning-based hierarchical
variational autoencoder (HVAE) to encode each sub-action
space into a latent representation (embedding). This
representation expresses the sub-action space properties
present in the set of diverse observations collected in the
environment by randomly sampled sub-actions. In the
following policy learning stage, we use the action encoder
in HVAE, take the sub-action space embedding as the
conditional input, project each sub-action space into a
commonly hidden space, and transform the heterogeneous
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problem into a more straightforward homogeneous
problem.
2. Robust and transferable policy learning. We propose a flex-
ible graph-attention-network-based centralized critic and
decentralized actor architecture to incorporate sub-action
representations as inputs and model the dependencies be-
tween sub-actions, which can be trained through multi-
agent reinforcement learning (Section 4.2). We provide a
training procedure to control overfitting to the training sub-
action set, making the policy better adapt to the structure of
time-varying composite action space and transfer better to
unseen sub-actions. We also incorporate an implicit credit
assignment structure to overcome the multi-agent credit
assignment problem.

4.1 Action Space Representation Learning
Since each sub-action space in the time-varying composite
action space impacts different aspects of the environment, it
is difficult to directly model the dependencies between sub-
actions and transfer the algorithm to unseen sub-actions.
For example, in precision agriculture tasks, the sub-action
for temperature adjusts the room temperature of the green-
house. In contrast, the carbon dioxide controller adjusts the
concentration of carbon dioxide in the greenhouse. Without
prior knowledge of experts, it is difficult for us to directly
model the dependency between these two sub-actions from
the data sampled by the agents.

However, the impact of these sub-actions on different
aspects of the environment is ultimately reflected in the
crop yield. Therefore, we can make a reasonable assump-
tion: each sub-action space affects common latent variables
related to crop yield, such as enzyme activity2. Suppose we
project each sub-action space into the same latent action
space. In that case, we can more easily capture the depen-
dencies between each sub-action and can also transfer to
unseen sub-actions more naturally.

The critical challenge is how to learn the representation
of the entire sub-action space. Similar with Jain et al. [20],
we use the observations sampled by different sub-actions to
encode the entire sub-action space. It is worth mentioning
that this is also one of the main differences between us
and Jain et al. [20]. The latter is to encode each action in one
action space separately, while we are encoding the entire
sub-action space.

To encoding the entire sub-action space, we employ
the hierarchical variational autoencoder (HVAE) architec-
ture [25]. We first use a behavior policy (random policy in
this paper) to collect observations for each sub-action space.
Specifically, to encode the sub-action space more thoroughly,
behavior policy needs to collect observation samples with
sufficient diversity. For each sub-action space, the behavior
policy will first fix other sub-actions to corresponding ran-
dom values and randomly sample the currently processed
sub-action and collect a batch of observation samples. The
above process is repeated many times, and finally, all the
collected observation samples are summarized. The ob-
tained set is the observation sample set corresponding to
the current sub-action space.

2. This is an assumption on the task of precision agriculture, and
other scenarios should have similar assumptions.

Then HVAE encodes the observation sample set corre-
sponding to each sub-action space into a single sub-action
space embedding. Finally, the sub-action space embedding
and a specific sub-action belonging to this sub-action space
are used to condition the VAE of the observation corre-
sponding to the specific sub-action. Here, we use sub-
action space embedding together with a specific sub-action
as the input of VAE is to get the projection of the sub-
action in the common latent action space. We can capture
the dependency between different sub-actions through in-
dependent transition data sampled by the agents only by
getting the projection of the sub-action in the latent space
instead of the projection in the original space. To enhance
the representation ability of action space embedding, similar
with [56], we add a self-supervised auxiliary task based on
the original HVAE. In addition to outputting reconstructed
observations, the decoder also predicts observations at fu-
ture moments. The schematic diagram of the above process
is shown in Figure 3.

Formally, for each sub-action space Ai ∈ A, HVAE
encodes its associated observation sample set {oki,j} ∈ Oi
into a embedding ci by mean-pooling over the individual
observations oki,j . For the fixed sub-actions A−i, a total of k
fixed random values ak−i are included. Each random value
ak−i corresponds to j randomly sampled sub-actions aki,j of
the current sub-action space i, so the observation sample
set {oki,j} contains a total of k × j observation samples. We
refer to this action space encoder as action space represen-
tation module qϕ(ci|Oi). The sub-action space embedding
ci sampled from the action space representation module
and sub-action aki,j is used to condition the action encoder
qψ(z

k
i,j |oki,j , aki,j , ci) and action decoder pu(oki,j |zki,j , ci) for

each individual observation oki,j ∈ Oi. In addition, there
also is a observation predictor ps([oki,j ]t|zki,j , ci) where [oki,j ]t
represents future t timesteps’ observations after oki,j . LSTM
is used as the observation predictor ps([o

k
i,j ]t|zki,j , ci) to

predict the future trajectory given the current observation
oki,j . The entire HVAE framework is trained with the fol-
lowing three-part losses: 1) the reconstruction loss of all
individual observation oki,j ; 2) the KL-divergence regular-
ization of action encoder qϕ and qψ with their respective
prior distribution p(c) and p(z|ci); 3) the prediction loss of
all individual observation oki,j . The final training objective
requires maximizing the Evidence Lower-Bound (ELBO):

Le =
∑
O∈O

{
Eqϕ(c|O)

[∑
o∈O

Eqψ(z|o,a,c) log pu(o | z, c) +
∑
o∈O

Eqψ(z|o,a,c)

log ps([o] | z, c)−DKL (qψ∥p(z | c))]−DKL (qϕ∥p(c))}
(2)

4.2 Robust and Transferable Policy Learning
In this section, we use the CCDA framework to learn the
factorizable joint policy. With the sub-action space embed-
ding and action encoder learned in the previous section, we
can easily project different sub-actions into the same latent
action space and use the graph attention network to capture
the dependencies between different sub-actions. So that the
exploration will be more efficient and the joint policy will
be better approximated. The network architecture is shown
in Figure 4.
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the state encoder is mean-pooled to obtain the sub-action space embedding distribution. The latter action encoder and action decoder constitute
a standard conditional variational autoencoder. The input is the sub-action space embedding (sample from the embedding distribution), the local
observation, and the sub-action at a certain timestep. The output is the reconstructed local observation. Besides enhancing the representation
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Fig. 4. The graph-attention-network-based centralized critic and decentralized actor architecture for robust and transferable policy learning. At each
timestep, each sub-action output by different agents will be input into the action encoder together with each sub-action space embedding, and
the projected sub-action representation is obtained. After passing the state-action pairing interaction function and state embedding, the obtained
agent representation will pass through the graph attention network. By fully capturing the correlation between different sub-actions, the joint Q value
function is finally obtained. The decentralized actor and centralized critic based on hypernetwork form an implicit credit allocation structure similar
to Zhou et al. [57].

The centralized critic includes four sub-modules: state
encoder qϕ, action encoder qψ , pairwise interaction mod-
ule pw and graph attention module gΘ. The state encoder
and the action encoder are the action space representation
module and the action encoder in the previous section.
The parameters of these two modules are not updated by
backpropagation. At each timestep t, the state encoder qϕ
and the action encoder qψ receive the local observation oti
and the sub-action output ati by the current policy network

of each agent i as inputs. At the same time, the sub-action
space embedding ci corresponding to each agent i will also
be input into the action encoder:

eto,i = qϕ(o
t
i), eta,i = qψ(o

t
i, a

t
i, ci).

Next, the local observations embedding eto,i of each agent
i and the projection of the sub-action eta,i in the common
latent space will be input into the pairwise interaction
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module pw together to form the embedding of each agent
i at the current timestep t:

eti = pw(e
t
o,i, e

t
a,i).

We then compute the attention weights from agent i to j
using these embedding as:

αi,j =
exp

(
Leaky ReLU

(
a(1)⊤

[
θ(1)eti∥θ(1)etj

]))
∑

k∈N (i)∪{i} exp
(

LeakyReLU
(
a(1)⊤

[
θ(1)eti∥θ(1)etk

])) ,
where the graph attention module is parameterized by
Θ(1) := {a(1), θ(1)}, and [·∥·] represents the concatenate
operation. The updated agent embedding is a weighted
summation with the attention coefficient as the weight:

eti
(1)

= αi,iθ
(1)eti +

∑
k∈N (i)

αi,jθ
(1)etk.

Above graph attention convolution operation is performed
m times and we denote the output of mth layer eti

(m).
Finally, we mean-pool all updated embeddings in the graph
and get the joint Q-value of all agents:

et = Mean
(
eti

(m)
)
, Qt({oti}, {ati}) = fξ(e

t).

In a fully cooperative POSG, all agents share the same
reward function, and the multi-agent credit assignment
problem will be introduced [58]. Although there are some
works [59, 60, 61] that try to solve this problem and have
achieved good results, these algorithms have their limi-
tations. None of them can effectively deal with variable
numbers of agents and composite action spaces. To solve
this problem, we borrowed the idea of Zhou et al. [57] to
implicitly achieves credit assignment among agents. Since
the centralized critic is based on graph attention networks,
it can naturally handle the variable number of agents. At the
same time, the CCDA framework is based on the SAC [62]
algorithm, so the heterogeneous composite action space is
no longer a problem3.

Specifically, similar to Rashid et al. [60], we use the
current state st and the hypernetwork [64] to generate
the parameters {Θ(l)}ml=1 of the graph attention network.
Formally, for layer l of the graph attention network, we have
Θ(l) = MLP (st). See Algorithm 1 for the complete pseudo-
code. It is worth noting that, to enhance the robustness of the
algorithm, that is, to effectively cope with the situation that
some sub-action spaces are randomly temporarily invalid,
we randomly mask some sub-actions during training. The
above trick is also called DropNode, and it has been proven
effective in GNN training [65].

4.3 Transfer to Unseen Actions
The SCORE algorithm can be easily transferred to unseen
sub-actions, as shown in Figure 5. For example, for preci-
sion agriculture tasks, with the development of intelligent
greenhouse technology, new controllers will be added to
the original control system. First, we use the action space
representation module to get the embedding of the unseen
sub-actions. Next, because the centralized critic based on

3. For discrete action space, Gumbel-softmax trick can be used,
similar to the MAAC [63] algorithm.

Algorithm 1: The SCORE algorithm.
Input: initial policy parameter εi for each agent i,

Q-function Q1, Q2, empty replay buffer D;
1 Set target Q-function Q̄1, Q̄2 equal to main
Q-function; while not convergence do

2 Observe local observation oi and select action
ai ∼ πε(· | oi) for each agent i;

3 Concatenate all action a = [a1∥ · · · ∥an] and
execute a in the environment;

4 Observe next local observation o
′

i of each agent i,
global reward r, and global done signal d;

5 Store ({oi}, {ai}, r, {o
′

i}, d) in replay buffer D;
6 if d is terminal then
7 Reset the environment;
8 end
9 if it’s time to update then

10 for j in range(however many updates) do
11 Randomly sample a batch of transitions,

B = {({oi}, {ai}, r, {o
′

i}, d)} from D;
Compute targets for the Q function:

y (r, {o′i} , d) =
r + γ(1− d)

(
minj=1,2 Q̄j ({o′i} , {ã′i})

−α
∑n
i=1 log πεi (ã

′
i | o′i)) , ã′i ∼ πεi (· | o′i)

12 Update Q-functions by one step of
gradient descent using

∇ 1

|B|
∑

B
(
Qj={1,2}({oi}, {ai})− y (r, {o′i}, d)

)2
;

13 Update policy for each agent by one step
of gradient ascent using

∇εi
1

|B|
∑

B (minj=1,2Qj ({oi}, {ãεi(oi)})

−α log
∑
i πεi (ãεi(oi) | oi)) ,

14 where ãεi(oi) is a sample from πεi(· | oi)
which is differentiable w.r.t. εi via the
reparametrization trick (for continuous
action space) or gumbel-softmax trick
(for discrete action space);

15 Update target networks with

Q̄j={1,2} ← ρQ̄j={1,2} + (1− ρ)Qj={1,2}.

16 end
17 end
18 end

the graph attention network can handle a variable number
of agents, the unseen sub-actions can be naturally added
to the original centralized critics. In this way, we do not
need to retrain the entire actor-critic network, but only to
fine-tune the pairwise interaction module pw and the graph
attention module gΘ, and then train the actor-networks
corresponding to the unseen sub-actions.
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Fig. 5. How SCORE transfers to the unseen sub-action spaces. Since the centralized critic based on the graph attention network can handle any
number of agents, we only need to represent the unseen sub-action spaces through the action space representation learning module and then
fine-tune the centralized critic. Of course, we also need to train the actor-networks corresponding to the unseen sub-action spaces from scratch.

5 EXPERIMENTS

5.1 Baselines

Since this paper transforms the single-agent problem into
a multi-agent problem, to verify the effectiveness of the
SCORE framework, we choose the PPO algorithm and the
SAC algorithm as the single-agent baselines. In terms of
multi-agent algorithms, considering the robustness of in-
dependent learning algorithms, we choose an independent
learning algorithm based on SAC, ISAC, as one of the
baselines. Besides, we choose the MADDPG [50] algorithm
based on the CCDA framework as another baseline. To ver-
ify the effect of the attention mechanism in the graph atten-
tion network, we also compared the MAAC [66] algorithm
that also uses the attention mechanism in the critic. Then, to
verify the role of the credit assignment module in SCORE
and the effectiveness of solving the team reward problem,
we also compared the QMIX [60] algorithm. Since neither of
these two algorithms can handle environments with contin-
uous action spaces, we have divided a reasonable range in
each sub-action space based on the output of the policy after
our method converges. Next, we discretize the continuous
sub-action space within this reasonable range to adapt to
the algorithm settings of QMIX and MAAC. Finally, due to
the similarity between the composite action space and the
parameterized action space, we also choose the H-PPO [16]
algorithm as one of the baselines.

5.2 Proof-of-Concept Task: Spider

5.2.1 Environment Details

To verify the efficiency of the SCORE algorithm, we first de-
signed a simple proof-of-concept simulation environment.
Specifically, we designed the Spider environment based on
the Ant environment of Mujoco. Compared with the four
identical legs in the Ant environment, the Spider environ-
ment contains two changes: 1) The Spider has a variable
length of its four legs; 2) Spider adds four additional legs
based on the Ant, two of which contain two joints (three
parts), and the other two legs have no joints. Two two-joint
legs and two zero-joint legs are symmetrically located in
four directions of the body. Since the length of the single-
joint legs is different, the legs on both sides of each leg

are also different. In summary, we consider each leg in the
Spider as a different sub-action space.

5.2.2 Effectiveness

We first compare the performance of different algorithms
in fully sub-action spaces. Figure 6(a) shows the average
episode reward of each algorithm in the test environment
under the fully 8 sub-action spaces. It can be seen from the
figure that the performance of the two single-agent bench-
mark algorithms is not satisfactory. The learning speed of
the PPO and H-PPO algorithm is too slow, while the SAC
algorithm has poor stability. This directly reflects that it
is unreasonable to model the time-varying composite ac-
tion space as a single agent problem. ISAC, MAAC, and
QMIX show the best performance except for SCORE, and
the learning process was also very stable. This sufficiently
shows that introduce decoupling to solve the time-varying
composite action space problem is very effective. Although
the MAAC algorithm also uses centralized critics, it uses the
attention mechanism to effectively filter useless information,
thus approximating the effect of decoupling. The MADDPG
algorithm performed the worst among all algorithms and
did not learn meaningful policies. After analysis, we believe
that the poor performance of MADDPG is caused by the
combination of centralized critics, deterministic policies,
and the credit assignment problem. Although MADDPG
uses the observations of all agents as input, the same is
true for the PPO algorithm and the single agent algo-
rithms such as SAC, and their performance is better than
MADDPG. This is because the single-agent algorithm does
not have a credit assignment problem. Further, MADDPG
increases the exploratory nature of the algorithm by adding
noise to the strategy. This method is more unstable and
challenging to fine-tune. MAAC [66] replaces the DDPG
algorithm with the SAC algorithm for learning stochastic
policies and introduces counterfactual baselines to solve the
credit assignment problem, which significantly improves
the performance of the MADDPG algorithm. Moreover, in
the experiment of MAAC, the MADDPG algorithm also
appeared similar to the experiment in this paper. It can
be seen from the results that the MAAC algorithm and
the QMIX algorithm are significantly better than MADDPG.
The reason why the QMIX algorithm works better is that
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(b) Unseen sub-action spaces.

Fig. 6. Performance comparison of fully sub-action spaces and unseen
sub-action spaces in Spider environment. The vertical axis represents
the average episode return in 10 different test environments. The hori-
zontal axis represents the total number of times the training phase inter-
acts with the environment in millions of units. All algorithms are tested
under three different random seeds, and the shaded area represents the
standard deviation.

it implicitly solves the credit assignment problem [67] and
achieves better exploration. The SCORE algorithm has a
noticeable performance gap compared with ISAC, MAAC,
and QMIX. This shows that it is essential to model the de-
pendency relationship between the sub-action spaces after
decoupling.

5.2.3 Robustness
Next, we compare the robustness of each algorithm in the
time-varying sub-action space of the Spider environment.
To verify the stability of different algorithms, we randomly
interfere with the part of the sub-action spaces in the fully
sub-action spaces and then directly test the performance
of the policies trained in the fully sub-action spaces. The
5 graphs in Figure 7 show the performance of different
algorithms in the test environment. The abscissa represents
the number of disturbing sub-action spaces, ranging from
1 to 7. The disturbed sub-action spaces are independently
and randomly selected from all sub-action spaces at each
timestep. To perform sufficient verification, we set 3 inter-
ference modes for the failed sub-action spaces: all zeros
padding, random padding, and lasted padding (padding
with the sub-action value at the previous time step). It can be
seen from the figures that the performance of the baselines
either drops sharply with the increase of the number of
failed sub-action spaces or only maintains at a low level
with minor fluctuations. In contrast, the SCORE algorithm
is excellent for stability. From the comparison results of the
three interference modes, it can be seen that the effect of all-
zero padding is the best, the variance of lasted padding is
the largest, and then the performance of random padding
is the worst. All zeros padding is reasonable in practical
tasks. Since the range of each sub-action in the Spider
environment is [−1, 1], 0 is a moderate value. In actual tasks,
such as precision agriculture scenarios, when the controller
is damaged, the output control signal is also a moderate
default value.

5.2.4 Transferability
Finally, we compare the transferability of each algorithm
in the unseen sub-action spaces. We first remove 2 sub-
action spaces from the entire composite action space so
that all algorithms are trained in partially composite action
space containing only 6 sub-action spaces. Next, we put
the trained policies in the entire composite action space
for finetuning. For ISAC, since each sub-action space is

completely independent, only two additional agents need to
be added when transferring to the unseen sub-action space.
The policies of the original agents can be directly inherited.
MAAC and QMIX algorithms show similar performance to
ISAC. For SCORE, the graph-attention-network-based critic
can handle a varying number of agents, although it is a
centralized one. However, for MADDPG and other single-
agent baselines, it cannot be directly transferred to the
unseen sub-action spaces. We did not let these algorithms
train from scratch in the unseen sub-action spaces to en-
sure a fair comparison. Specifically, we design the network
structure of these baselines according to the number of the
sub-action spaces in the entire composite action space but
freeze the parameters of 2 sub-action spaces. Figure 6(b)
shows the performance comparison during the finetuning
process. It can be seen from the figure that all algorithms
have an average reward greater than 0 at the beginning of
the finetuning. This shows that the policies in the partially
sub-action spaces are still effective in the unseen sub-action
space. However, with the progress of the finetuning, except
for the SCORE algorithm, the remaining baselines only
converged slowly after a significant performance decline.
This shows that directly migrating the original policies to
the unseen sub-action spaces is not an efficient solution.

5.3 Precision Agriculture Task: Simulated Greenhouse

To verify the robustness and transferability of the SCORE
algorithm on precision agriculture tasks, we conducted per-
formance experiments on the simulated greenhouse envi-
ronment.

5.3.1 Environment Details
Since the agricultural tasks covered by the simulated green-
house are very extensive, we selected one of the subtasks,
the tomato simulator, for follow-up experiments to verify
the SCORE algorithm more clearly. Tomato simulator can
accurately simulate the changes in tomato growth in var-
ious aspects under different weather conditions. Table 1
shows the state space, action space, and reward function
of the tomato simulator in detail. Specifically, the tomato
simulator simulates the growth status of tomatoes under
different planting strategies in an intelligent greenhouse
for more than 160 days4. The weather status of each day
is different and determined, read from a fixed database.
The state information of each simulated day includes two
parts: digital weather data and tomato status data. The
digital weather data includes data from two consecutive
simulated days: the 24-hour light intensity, outdoor temper-
ature, outdoor humidity, outdoor wind speed, and virtual
atmospheric temperature of the current simulated day, as
well as the 24-hour temperature, humidity, carbon dioxide
concentration, and light intensity in the greenhouse of the
previous simulated day. Plant status data includes the num-
ber of planting days, watering volume, drainage volume,
leaf area index, plant weight, number of plant branches and

4. From late December to the end of May of the following year, a
planting cycle of tomatoes is covered. Note that the normal growth
cycle of tomatoes is about 2 − 3 months. Since planting starts in
winter, crops grow slowly, so the simulated planting cycle in the tomato
simulator is longer.
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Fig. 7. Comparison of the robustness of different algorithms in the Spider environment. The above results are obtained by conducting 10 experiments
with different random seeds in the test environment after the algorithm training converges. The dot represents the average episode return, the thick
vertical line represents the standard deviation, and the thin vertical line represents the maximum and minimum values. The horizontal axis indicates
the number of temporarily invalid sub-actions, from 1 to 7. The specific failure mechanism is as follows: at each timestep in an episode, a certain
number of sub-actions will be randomly taken to invalidate. There are three failure modes, default value completion (black), random value completion
(blue), and sub-action value completion of the previous timestep (red).
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Fig. 8. Performance comparison of fully sub-action spaces and unseen
sub-action spaces in tomato simulator. The vertical axis represents the
average episode return in 10 different test environments. The horizontal
axis represents the total number of times the training phase interacts
with the environment in millions of units. All algorithms are tested under
3 different random seeds, and the shaded area represents the standard
deviation.

leaves, cumulative tomato wet weight, cumulative tomato
dry weight, and cumulative tomato number corresponding
to the simulated day. All state information has a total of 223
dimensions and has been normalized to [−1, 1] in advance.
The control strategy includes the 24-hour greenhouse tem-
perature, carbon dioxide concentration, light duration and
end time, and irrigation start and end time for a total of 52
dimensions on each simulated day. We model the control
strategy as a composite action space containing 4 sub-action
spaces: temperature sub-action (24-dimensional continuous
value, range from 13 to 25), carbon dioxide sub-action (24-
dimensional continuous value, range from 400 to 700), light
sub-action (2-dimensional continuous value, range from 0
to 24), and irrigation sub-action (2-dimensional continuous
value, range from 0 to 24). The reward (continuous value,
range from 0 to 30) for each simulated day is represented by
cumulative tomatoes wet weight.

5.3.2 Effectiveness
Like the Spider environment, we first compare the average
episode rewards of each algorithm in the entire composite
action space containing 4 sub-action spaces. As can be seen
from Figure 8(a), the three single-agent RL algorithms, PPO
and SAC, H-PPO, and the MARL algorithm, MADDPG,

cannot learn meaningful planting policies. This is similar
to the experimental results obtained in the Spider envi-
ronment. Although the tomato simulator has only 4 sub-
action spaces, the overall action vector length is 52, making
the tomato simulator much more complex than the Spider
environment. The shortcomings of joint training of single-
agent RL algorithms and the centralized critic of MADDPG
have become more apparent. The ISAC, MAAC and QMIX
algorithm still achieved good results in the tomato simu-
lator, but its convergence speed is too slow. In contrast,
the SCORE algorithm far surpasses the ISAC algorithm
in convergence speed or final performance. This means
that explicitly modeling the dependencies between the sub-
action spaces can improve the exploration efficiency of the
algorithm, thereby improving the convergence speed and
final performance.

5.3.3 Robustness
Next, we analyze the robustness of each algorithm in the
tomato simulator. The way the experimental results are
obtained is similar to the Spider environment. The differ-
ence is the way of zero-padding. We no longer use 0.0
for padding but use a moderate default value for each
sub-action space. For example, for the sub-action space for
temperature, the value range is 13.0 to 25.0, and we take
19.0 as the default value. Through Figure 9, we found
some interesting phenomena. For the two single-agent RL
algorithms and the MARL algorithm MADDPG in the first
row, as the number of temporarily invalid sub-action spaces
gradually increases, the result of using zero-padding or ran-
dom padding is gradually rising. The results obtained using
the last padding have been maintained at a superficial level.
In contrast, the two algorithms in the second row show that
the results obtained by using the last padding are generally
better than the other two padding methods. Combining the
results of Figure 8(a) and the characteristics of the tomato
simulator, we believe that the following reasons lead to the
above results. First, because planting is an RL task with
more delayed reward characteristics, the results obtained by
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TABLE 1
The detailed information of tomato simulator.

Elements Description Remarks

Observation Digital weather data Previous simulated day

Temperature,
humidity,

carbon dioxide concentration,
and light intensity
in the greenhouse

Per hour 223 dimensions,
normalized to

[−1, 1] in advance

Current simulated day

Light intensity,
outdoor temperature,

outdoor humidity,
outdoor wind speed,

and virtual atmospheric temperature

Per hour

Crops status data

The number of planting days,
watering volume,
drainage volume,

leaf area index,
plant weight,

number of plant branches and leaves,
cumulative tomatoes wet weight,
cumulative tomatoes dry weight,
and cumulative tomatoes number

Per day

Composite
Action Space

Sub-action for temperature Continuous value Range: [13.0, 25.0] Per hour

52 dimensionsSub-action for carbon dioxide Continous value Range: [400.0, 700.0] Per hour
Sub-action for illumination Discrete value Start and end time, Range: [0, 23] Per day

Sub-action for irrigation Discrete value Start and end time, Range: [0, 23] Per day
Reward cumulative wet weight Continuous value Range: [0.0, 30.0] Per day 1 dimension
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Fig. 9. Comparison of the robustness of different algorithms in tomato simulator. The above results are obtained by conducting 10 experiments
with different random seeds in the test environment after the algorithm training converges. The dot represents the average episode return, the thick
vertical line represents the standard deviation, and the thin vertical line represents the maximum and minimum values. The horizontal axis indicates
the number of temporarily invalid sub-action spaces, from 1 to 3. The specific failure mechanism is as follows: at each timestep in an episode, a
certain number of sub-action spaces will be randomly taken to invalidate. There are three failure modes, default value completion (black), random
value completion (blue), and action value completion of the previous timestep (red).

using the last padding method should generally be better
than the other two padding methods; secondly, according
to the results in Figure 8(a), the three algorithms in the
first row have not learned an effective planting strategy,
which makes the random strategy or the default strategy
will achieve better results, so the result of the last padding
is the worse than other two padding methods. Finally, for
the three algorithms in the first row, as the number of
temporarily invalid sub-action spaces increase, the tomato
simulator becomes simpler, so the performance will grad-
ually become better. Finally, we focus on comparing the
experimental results of ISAC, MAAC, QMIX and SCORE.
It can be seen from Figure 9(e) and Figure 9(h) that as the
number of temporarily invalid sub-action spaces increases,
the results obtained by ISAC, MAAC and QMIX using the
last padding show a significant drop. In contrast, the drop

in SCORE is tiny. This shows that the structure of SCORE
makes it have excellent algorithm robustness.

5.3.4 Transferability
Finally, we compared the transferability of each algorithm
in the unseen sub-action space under the tomato simulator.
We first set the 2 sub-action spaces for temperature and
irrigation to fixed default values and train each algorithm
to converge under this setting; then transfer the trained
algorithms to the fully sub-action spaces for finetuning. The
transferring and finetuning method is consistent with the
Spider environment. It can be seen from Figure 8(b) that
the three single-agent RL algorithms PPO, SAC, H-PPO and
the MADDPG algorithm achieve better performance at the
beginning of the finetuning process than directly training
in the entire action space. This is because the complexity of
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the tomato simulator with only 2 sub-action spaces is sig-
nificantly reduced compared to the entire composite action
space, and the fixed default values are also a good planting
strategy. However, as the finetuning process continues, the
performance of these three algorithms gradually declines
and finally converges to performance similar to that of
the entire action space. In the process of finetuning the
ISAC, MAAC and QMIX algorithm, similar to the Spider
environment, the performance drops first and then rises
slowly. The SCORE algorithm can quickly converge with
a higher performance start point. These phenomena once
again show that directly transfer the trained policies to the
unseen sub-action space is not a reasonable solution.

5.3.5 More Analysis
To explore the reasons for the excellent performance of the
SCORE algorithm in more depth, we compare the corre-
lation between each sub-action space output by different
algorithms. Specifically, we train each algorithm in the fully
sub-action space to converge and then sample a composite
action trajectory in the test environment. Each timestep
in the trajectory contains 4 sub-actions. Since light and
irrigation actions indicate the start and end time, while
temperature and carbon dioxide indicate the specific values
of each hour of the simulation day, we choose temperature
and carbon dioxide as the discussion objects to better vi-
sualize the correlation. It can be seen from the Figure 10
that the temperature and carbon dioxide action output by
the SCORE algorithm have a certain correlation, while the
different sub-actions output by other algorithms are rela-
tively independent. In addition, the sub-actions output by
the SCORE algorithm and the ISAC algorithm are more
concentrated, and have obvious changes over time.

5.4 Ablation Study

In this section, we perform an ablation analysis on the
critical components of the SCORE algorithm. First, in order
to explore the impact of sub-action space relationship mod-
eling on the performance of the algorithm, we replaced the
aggregation function of the graph neural network from the
attention layer (AL) with the mean function (MF) and the
sum function (SF); secondly, in order to verify the influence
of hypernetwork (HN) on the multi-agent credit assignment,
we removed the hypernetwork, and the parameters of the
GNN network are directly updated according to the gra-
dient; finally, to verify the effect of the action space repre-
sentation learning on the relationship modeling of the sub-
action spaces, we removed the action space representation
learning (ASRL) stage. The action encoder and state encoder
are trained from scratch. According to the above notation,
the notation of the SCORE algorithm can be named as ASRL
+ AL + HN; The baseline using the mean function as the
aggregate function can be named ASRL + MF + HN. The
notation of other baselines is similar. We train all baselines in
the fully sub-action spaces and the unseen sub-action spaces
of the two environments to converge and then calculate
the mean and variance of experiments under 10 different
random seeds in the test environment. We first analyze the
transferability of all algorithms. The final results are shown
in Table 2.

It can be seen from the table that the impact of the HN
module on the final performance is smaller than that of the
ASRL module. This shows that the problem of multi-agent
credit assignment in the Spider task and tomato planting
task is not severe, and the excellent performance of the
ISAC algorithm in these two tasks also proves this. After re-
moving the ASRL module, the transferability of the SCORE
algorithm in the unseen sub-action space is generally worse
than the final performance in the fully sub-action space.
This shows that the action space representation learning
has a positive effect on improving the transferability of the
algorithm. Without the HN module and the ASRL module,
the SCORE algorithm can be regarded as modeling the cen-
tral critic of the MADDPG algorithm with GNN. As can be
seen from the table, the algorithm’s performance is greatly
improved compared to the MADDPG algorithm. This shows
the importance of modeling the dependencies between the
sub-action spaces after decomposing the composite action
space.

Finally, we analyze the robustness of each algorithm
in the time-varying action space. We use the converged
performance of each algorithm in the fully sub-action spaces
of the tomato simulator as a baseline and get the histogram
shown in Figure 11. It can be seen from the figure that
the action space representation learning plays a vital role
in the robustness of the algorithm. After removing the
ASRL module, the different aggregation functions of the
graph neural network have little effect on the algorithm’s
robustness.

To analyze why the ASRL module affects the perfor-
mance more deeply, we visualized the intermediate network
result, that is, the agent embedding of the AL+HN algorithm
and the ASRL+AL+HN (SCORE) algorithm. The results are
shown in the Figure 12. It can be seen from the figure that
the ASRL module can learn better action embedding and
agent embedding so that the subsequent modules can better
model the correlation between each sub-action space.

In addition to the methods described in the experimental
part of this paper, we also conducted experiments with
two additional methods, i.e., the mask training mechanism
and the penalty training mechanism, to solve the problem
that the baselines cannot be extended to the new action
space. Specifically, the mask training mechanism is not
much different from our current training mechanism. The
difference is that at this time, the parameters of the output
head corresponding to the redundant sub-action spaces are
no longer frozen; The penalty training mechanism is based
on the mask training mechanism, adding a penalty term,
which calculates the deviation of the sub-actions output by
these redundant output heads from the default sub-actions.
The transfer results under new sub-action spaces are shown
in the Table 3.

6 CONCLUSION

This paper proposes a structured cooperative reinforcement
learning algorithm, SCORE, based on centralized critic and
decentralized actor framework, aiming at the time-varying
composite action space problem. SCORE introduces the idea
of decoupling and decomposes the single-agent RL problem
with time-varying composite action space into a variable
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Fig. 10. The pairwise relationships of sub-actions for carbon dioxide and temperature in tomato simulator. These 2 sub-action spaces are both
24-dimensional, representing the hourly temperature and carbon dioxide concentration in 24 hours of a simulated day. We select the temperature
and carbon dioxide values at 0: 00 (upper left), 06: 00 (upper right), 12: 00 (lower left) and 18: 00 (lower right) in a whole sub-action trajectory. This
action trajectory is sampled in the test environment after the algorithm training converges in the fully sub-action space of the tomato simulator.

TABLE 2
The ablation studies of the variants of SCORE algorithm. ASRL means action space representation learning stage; HN means hypernetwork in the

policy learning stage; MF means we replace attention layer with mean function to be the aggregation function in GNN; SF means we replace
attention layer with summation function to be the aggregation function in GNN; AL means use attention layer as the aggregation function in GNN.

The mean and standard deviation are obtained under 10 different random seeds in the test environment.

Spider Tomato Simulator
Fully Sub-Action Spaces Unseen Sub-Action Spaces Fully Sub-Action Spaces Unseen Sub-Action Spaces

Converge Initial Converge Converge Initial Converge
MF 4256(±93) 2545(±205) 4078(±265) 524(±9) 429(±13) 481(±6)
SF 4235(±95) 2487(±227) 3975(±283) 537(±9) 438(±15) 490(±14)
AL 4519(±112) 2632(±335) 4379(±145) 552(±21) 442(±6) 512(±20)

MF+HN 4796(±78) 2786(±285) 4568(±63) 625(±13) 486(±31) 583(±25)
SF+HN 4820(±203) 2762(±321) 4728(±262) 629(±12) 534(±22) 576(±12)
AL+HN 4887(±176) 2711(±324) 4792(±268) 622(±12) 519(±12) 580(±12)

ASRL+MF 5411(±181) 2880(±245) 5345(±131) 752(±8) 548(±13) 767(±6)
ASRL+SF 5200(±260) 2737(±223) 5220(±220) 755(±15) 529(±12) 720(±31)
ASRL+AL 5783(±69) 2855(±326) 5742(±103) 836(±24) 552(±30) 856(±31)

ASRL+MF+HN 5523(±230) 3176(±310) 5328(±160) 854(±8) 623(±35) 823(±15)
ASRL+SF+HN 5498(±154) 3108(±286) 5345(±165) 867(±12) 612(±43) 833(±22)
ASRL+AL+HN

(SCORE) 6252(±187) 3365(±329) 6296(±257) 1125(±9) 648(±35) 1143(±12)
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TABLE 3
Different baselines use different methods to transfer to the unseen sub-action spaces.

Spider Tomato Simulator
Unseen Sub-Action Spaces Unseen Sub-Action Spaces

Initial Converge Initial Converge
PPO 1267(±982) 1962(±234) 443(±12) 313(±2)
PPO-mask 1223(±912) 2007(±208) 458(±9) 308(±2)
PPO-penalty 1185(±897) 1786(±208) 415(±10) 313(±1)
SAC 2526(±539) 3143(±156) 512(±10) 312(±2)
SAC-mask 2550(±554) 3187(±128) 500(±12) 311(±2)
SAC-penalty 2399(±508) 2855(±132) 487(±10) 313(±2)
MADDPG 1634(±535) 0(±0) 485(±10) 312(±2)
MADDPG-mask 1588(±587) 0(±0) 483(±8) 311(±2)
MADDPG-penalty 1503(±569) 0(±0) 454(±10) 311(±2)
H-PPO 2834(±227) 3052(±112) 465(±12) 408(±5)
H-PPO-mask 2789(±235) 3145(±98) 423(±12) 418(±4)
H-PPO-penalty 2624(±227) 2958(±62) 406(±9) 368(±3)
QMIX 3250(±187) 3956(±50) 621(±5) 823(±3)
QMIX-mask 3329(±156) 3888(±76) 601(±3) 800(±5)
QMIX-penalty 3032(±187) 3662(±88) 584(±3) 767(±5)
MAAC 3189(±202) 4348(±83) 625(±7) 805(±5)
MAAC-mask 3103(±206) 4267(±92) 654(±4) 824(±2)
MAAC-penalty 2889(±336) 4022(±84) 584(±3) 752(±4)
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Fig. 11. The robustness of ablation algorithms in tomato simulator. ASRL
means action space representation learning stage; HN means hyper-
network in the policy learning stage; MF means we replace attention
layer with mean function to be the aggregation function in GNN; SF
means we replace attention layer with summation function to be the
aggregation function in GNN; AL means use attention layer as the
aggregation function in GNN. We use the converged performance of
each algorithm in the fully sub-action spaces of the tomato simulator as
a baseline (100%). All results are obtained under 10 different random
seeds in the test environment. The longer the different color segments,
the more performance degradation, representing the worse robustness.
Here the “offline” means temporarily invalid.

number of heterogeneous MARL problems. In order to
deal with the variable number of multi-agent scenarios, the
nonstationary environment problem and multi-agent credit
allocation problem introduced after decomposition, SCORE
introduces a centralized critic based on the graph attention
network and an implicit credit assignment structure; Simul-
taneously, to better handle the unseen sub-action spaces
and capture the dependencies between the agents, we also

temperature
carbon dioxide
light 
irrigation

temperature
carbon dioxide
light
irrigation

Fig. 12. Agent embedding visualization. The Left figure shows the visu-
alization result of the AL+HN algorithm agent embeddings; the Right
figure shows the visualization result of the ASRL+AL+HN (SCORE)
algorithm agent embedding. The above two-dimensional image is ob-
tained by reducing the dimension of the agent embedding through
the t-SNE algorithm, and different colors represent different sub-action
spaces. Each point represents a timestep in a trajectory sampled by the
converged algorithm in the test environment.

introduce the hierarchical variational autoencoder, a feature
extractor based on unsupervised learning.

Experiments in the proof-of-concept task and precision
agriculture task show that the SCORE algorithm is signifi-
cantly better than the single-agent and multi-agent baselines
in algorithm robustness and transferability. The ablation
analysis shows that after the single-agent problem is decom-
posed into multi-agent problems, the use of graph attention
networks to capture the dependencies between agents ex-
plicitly impacts the algorithm’s performance. Besides, the
hierarchical variational autoencoder based on unsupervised
learning can play a positive role in the robustness and
transferability of the algorithm.
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