
SparseMAAC: Sparse Attention for
Multi-agent Reinforcement Learning

Wenhao Li, Bo Jin(B), and Xiangfeng Wang

Shanghai Key Lab for Trustworthy Computing,
School of Computer Science and Software Engineering,

East China Normal University, Shanghai, China
{bjin,xfwang}@sei.ecnu.edu.cn

Abstract. In multi-agent scenario, each agent needs to aware other
agents’ information as well as the environment to improve the perfor-
mance of reinforcement learning methods. However, as the increasing
of the agent number, this procedure becomes significantly complicated
and ambitious in order to prominently improve efficiency. We introduce
the sparse attention mechanism into multi-agent reinforcement learn-
ing framework and propose a novel Multi-Agent Sparse Attention Actor
Critic (SparseMAAC) algorithm. Our algorithm framework enables the
ability to efficiently select and focus on those critical impact agents in
early training stages, while eliminates data noise simultaneously. The
experimental results show that the proposed SparseMAAC algorithm
not only exceeds those baseline algorithms in the reward performance,
but also is superior to them significantly in the convergence speed.

Keywords: Multi-agent deep reinforcement learning ·
Sparse attention mechanism · Actor-attention-critic

1 Introduction

1.1 Multi-agent Deep Reinforcement Learning

Reinforcement learning is one of the most popular research area in academia
and industry. Its goal is to maximize the cumulative feedback while the agent
interacts with the environment, as a result the agent can guarantee an opti-
mal strategy. The biggest limitation of traditional reinforcement learning is the
demand to manually design features to model the state of environment, which
significantly increases the difficulty of extending to sophisticated task. With
the development of deep learning, representational learning in complex tasks
has become achievable, and deep reinforcement learning has recently achieved
remarkable results in games [19], robotics [5], and autonomous driving [2].

Our work focuses on the multi-agent reinforcement learning (MARL) [1].
Actually in many practical problems, there are multiple agents that need to
controlled more intelligently, e.g., multi-robot control [13], multiplayer games
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11448, pp. 96–110, 2019.
https://doi.org/10.1007/978-3-030-18590-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18590-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-18590-9_7

SparseMAAC 97

[20] and etc. These agents always affect each other while completing their own
targets at the same time, so that the single agent reinforcement learning algo-
rithms can not be directly applied to multi-agent scenario [22]. The process of
state transition in multi-agent system can be principally described as: At a cer-
tain time step, the environment receives the joint actions of all agents, further
moves to the next state with reward returned from each agent. Multi-agent prob-
lems can be divided into two categories according to the relationship between
agents, i.e., collaboration problem and competition problem [1]. In the competi-
tion problem, the agents of different teams are independent of each other, that is,
they have their own reward functions. The goal of each team is to only maximize
the cumulative rewards belong to themselves. On the contrary, in collaboration
problem, the goal of all agents is no longer to maximize the cumulative rewards
they receive individually, but to maximize whole return of all agents in groups.
Furthermore in general, all agents share the same value function (objective) in
the collaboration problem.

1.2 Attention Mechanism in Multi-agent Reinforcement Learning

The attention mechanism automatically extract the semantic information with
respect to each task prior information through an end-to-end manner. This
prominent advantage of attention mechanism has been greatly extracted in
recent years and it has many successful applications in the field of computer
vision [27], natural language processing [11,25] and even reinforcement learning
[6,7,18].

The Multiple Actor-Attention-Critic algorithm (MAAC) [6] is a typical atten-
tion mechanism based multi-agent reinforcement learning method. MAAC learns
the multi-agent system through one centralized critic and many separated decen-
tralized actors. With the purpose to solve the limitations of both traditional
value function method and strategy gradient method on multi-agent problems,
MAAC borrowed the basic idea of Multi-Agent Deep Deterministic Policy Gra-
dient method (MADDPG) [10], which allows introducing extra agent informa-
tion in the training process. Further in details, the critic is augmented with
extra information about the policies of other agents. As the increasing of agents
number, the information of each agent which needs to process or communicate
in order to make decision is significantly growing. If each agent considers the
behaviors of all other agents, the decision-making learning procedure becomes
extremely more difficult. For a large-scale multi-agent system, each agent’s deci-
sion is not affected by all other agents. Furthermore, it will inevitably make the
useful signal submerged in the background noise once all other agents are equally
taken into account. The MAAC algorithm introduced the attention mechanism
to address this problem, by sharing an attention mechanism which selects rele-
vant information for each agent at every timestep.

However, MAAC still take advantages of all the agents although the utiliza-
tion level is considered to increase accuracy and efficiency. In practical applica-
tions, the tasks performed by different agents maybe quite different. Therefore,

98 W. Li et al.

in the process of learning, each agent needs to select the related agents while fil-
ter out the independent ones. This selection scheme should not only focus on the
degree judgement but more importantly on agent picking. In order to solve this
problem, we combine the sparse selection technique with classical MAAC algo-
rithm and propose a multi-agent sparse attention actor critic algorithm (Sparse-
MAAC) for multi-agent reinforcement learning problem. Our main contributions
are summarized as follows:

1. We introduce the sparse attention mechanism into the multi-agent reinforce-
ment learning combined with MAAC algorithm, which enables our algorithm
to quickly filter out the useful parts from the received information in the
complex environment and eliminate the noise data. This allows the algorithm
to have a faster convergence or the ability to jump out of a local optimal
solution. Through the guaranteed sparse attention weights, the established
system can be more interpretable.

2. Based on the related work [16], we introduce the hyperparameters of the
control algorithm sparsity of sparsemax [12], as a result prior environment
information can be easily introduced to our algorithm framework in order to
acclimate varied complexity environments.

3. To better verify the effects of sparse attention, we design a more complex
collaborative environment called Grouped Cooperative Treasure Collection
(GCTC), and conduct related and significative experiments performance.

The rest of the paper is organized as follows. In Sects. 2 and 3, we discuss
related work and backgrounds, followed by a detailed description of our approach
in Sect. 4. We report experimental results in Sect. 5 and conclude our paper in
Sect. 6.

2 Related Work

2.1 Sparse Attention Mechanism

The attention mechanism has been widely applied in deep learning in recent years
because of its automatically output driven learning performance. The attention
mechanism was first successfully applied in [27] which automatically generates a
description that matches the content of the pictures. The images are extracted
by convolutional neural network (CNN) and further combined with the implicit
state of long short-term memory (LSTM). A multi-layer perceptron is introduced
to calculate the similarity, and the softmax function is used to compute the
attention weights. The authors also put forward the concept of hard attention
and soft attention which are significantly different.

Then [11] extended the attention mechanism into the machine translation
application. By considering the partial relationship between output word and
input words, they proposed both global attention and local attention schemes.
The attention mechanism is regularly and prosperously combined with recurrent
neural networks (RNN). However because of the recurrent nature of RNN, it

SparseMAAC 99

is not conducive to parallel computing, so that usually the training procedure
always be time-consuming. [25] uses a self-attention mechanism instead of a
circular neural network, while both scaled dot-product attention and multi-head
attention scchemes are introduced.

The softmax function are usually introduced to calculate the attention
weights, which is dense without any possibility to select agents. Although both
[27] and [11] attempt to introduce sparsity by adding special structures, like
hard attention or local attention, they ignore introducing sparse constraints on
activation function. Reference [12] introduced sparsity into the attention mecha-
nism by seeking a sparse activation function for the first time. The core idea is to
take advantage of the fact that the Euclidean projection of any input vector to a
simplex is sparse. Reference [16] found that it also falls into the above situation
by calculating the max function subgradient. By considering the discontinuity of
this projection, the authors introduced a strongly convex regularizer on the dual
problem of the max operator with the purpose to guarantee efficient training.
The sparsemax algorithm in [12] can be included into the algorithm framework
of [16] In our paper, we will utilize the generalized γ-sparsemax algorithm in [16].

2.2 Attention Mechanism in Reinforcement Learning

Attention mechanism is also popularly applied to reinforcement learning meth-
ods. Reference [17] used reinforcement learning to conduct brain activity research
and introduced attention mechanism to screen input signals in order to accel-
erate the training process. Reference [18] considered the memory structure in
the reinforcement learning algorithm to preserve the knowledge learned by the
agent. In decision-making procedure, the attention mechanism is introduced to
select relevant information from the memory with the purepose to assist decision-
making. A soft attention mechanism combined with the Deep Q-Network (DQN)
[14] model is proposed in [15] to highlight task-relevant locations of input frames.

In the field of multi-agent reinforcement learning, [6] combines the atten-
tion mechanism with the actor-critic algorithm to train a centralized critic that
automatically selects relevant information. [7] also proposed an attention-based
actor-critic algorithm. Their main concerns are on learning attention models for
sharing information between policies. Our work in this paper is basiclly based on
[6], but firstly and originally designs a sparse attentional mechanism for multi-
agent reinforcement learning, which strengthens the algorithm stability for com-
plicated and noisy environments and guarantee better interpretability.

3 Preliminaries and Backgrounds

3.1 Markov Decision Process and Markov Game

Reinforcement learning models the process in which an agent learns in constant
interaction with the environment as a Markov decision process (MDP) [21].
An MDP is defined by a quintuple 〈S,A,R,P, γ〉 where S and A represent

100 W. Li et al.

a limited state space and a limited action space respectively. The probability
transfer matrix P is a three-dimensional tensor, where each element represents
the probability that the agent will move to the next state s′ after executing
action a in state s. The reward function R : S × A → R defines the instant
feedback made by the environment after the agent executes the action a in the
state s and this feedback can be stochastic. Finally, γ ∈ [0, 1] represents the
discount factor that defines the trade-off between the immediate feedback and
the accumulated future feedbacks during the agent learning process

Since our work focuses on multi-agent situation, at the beginning we present
a formal definition of this problem. A Markov game 〈S,N ,A,RN ,P, γ〉 denotes
an extension of the Markov decision process in multiple agent scenarios [9], while
N represents the number of agents. The key differences with traditional MDP
exist on the reward functions, i.e., RN , while the probability transition matrix
P and the policy π both depend on the actions of all agents in the environment.

3.2 Deep Q-Network

DQN is the most famous deep reinforcement learning method in recent years,
which learns the optimal action value function corresponding to the optimal
policy by minimizing the mean square bellman error (MSBE):

L(θ,D) = E(s,a,r,s′)∼D [Q(s, a; θ) − Qtarg]
2
, (1)

where s, s′ ∈ S, a ∈ A and r ∈ R denote the state, action and reward respec-
tively. Q(s, a; θ) denotes the action value function which is parameterized with
θ. Qtarg = r(s, a) + γ maxa′ Q̄(s′, a′). Since DQN approximates the action value
function Q with neural network, its convergence can not be guaranteed theo-
retically until now. In order to ensure the stability of the training procedure,
traditionally the target function Q̄ and the experience replay buffer D are intro-
duced, where the parameters of Q̄ are periodically updated with the behavior
function Q’s parameters.

3.3 Vanilla Policy Gradient and Actor Critic

The policy gradient-type method is another typical reinforcement learning algo-
rithm framework. Its core idea is to learn policy directly rather than indirectly
establish through learning value functions. More specifically, policy gradient
method directly adjust parameters θ of the policy in order to maximize the
objective function J(θ) = Eτ [Rτ] by gradient ascent scheme with ∇θJ(θ). In
details the gradient takes the follow formulation [24]:

∇θJ(θ) = Est∼pπ,at∼πθ

[
∇θ log πθ(at|st)

T∑
t

r(st, at)

]
. (2)

where st ∈ S, at ∈ A denote the state and action at time t, pπ =
P (st

∣∣st−1, at−1) × π(at−1

∣∣st−1) and πθ = π(at

∣∣st). The resulting method with

SparseMAAC 101

the above formula is called vanilla policy gradient method (or REINFORCE
method [26]). However, this method used a real reward in order to directly esti-
mate the gradient, as a result the variance would be very large because of error
accumulation. Lots of variant algorithms are proposed with the purpose to solve
this shortcoming. Their core idea is to estimate the cumulative rewards with
another function. This function is usually called critic, while the resulting algo-
rithm framework is called actor-critic algorithm [23]. The advantage function
A(s, a) = Q(s, a) − V (s) (V (s) denotes the value function at state s) is a popu-
larly used critic function, which measures the pros and cons of one action relative
to the average performance.

3.4 Soft Actor Critic

Soft Actor Critic (SAC) [4] is an algorithm of training stochastic policy through
off-policy way. The entropy regularization plays an important role in the algo-
rithm framework. The objective of SAC is to maximize a tradeoff between cumu-
lative rewards together with the entropy of the policy distribution. Each agent
is encouraged to pay more attention to exploration in the early stage of train-
ing while also avoids converging to a local optimal solution. In SAC algorithm
framework, the goal becomes to maximize the following objective function, i.e.,

π� = arg max
π

Eτ∼π

[∞∑
t=0

γt(r(st, at) + αH(π(·∣∣st)))

]
, (3)

where st ∈ S, at ∈ A denote the state and action at time t, γ ∈ (0, 1] denote the
discount factor and α > 0 is the trade-off coefficient. Then state value function
and action value function are calculated as

Vπ(s) = Eτ∼π

[∞∑
t=0

γt(r(st, at) + αH(π(·|s)))∣∣s0 = s

]
, (4)

Qπ(s, a) = Eτ∼π

[∞∑
t=0

γtr(st, at) + α

∞∑
t=1

γtH(π(·|st))
∣∣s0 = s, a0 = a

]
. (5)

With these definitions, the corresponding MSBE’s target term and policy gra-
dient respectively become

Qtarg(st, at) = r(st, at)+Est+1∼pπ,at+1∼πθ

[
Q̄(st+1, at+1)−α log(πθ(at+1|st+1))

]
,

∇θJ(θ) = Est∼pπ,at∼πθ
[∇θ log πθ(at|st)(α log πθ(at|st) − Q(st, at) + b(st))] ,

where b(s) is a state-dependent baseline for variance reduction [3]. Under the
giving two formulations, the SAC algorithm alternately iteratively updates the
actor and critic like the traditional actor-critic algorithm.

102 W. Li et al.

4 Algorithm Framework: SparseMAAC

In this section, we introduce our proposed Multi-Agent Sparse Attention
Actor Critic (SparseMAAC) algorithm. As discussed above, the main moti-
vation for our algorithm is the partial relationship between agents in a prac-
tical multi-agent system. Especially only a limited number of other agents
have impacts on each agent’s own decisions. Excessive consideration of other
agents that have less influence will not only reduce the sampling efficiency,
but also cause the convergence to a “worse” local optimal solution. The sparse
attention mechanism introduced to solve these problems also leads to strong
interpretability.

In the following, we introduce our sparse attention mechanism together with
its variants, and then discuss our proposed SparseMAAC algorithm in details.

4.1 Sparsemax

The softmax function is commonly used for attention mechanism designing. Sup-
pose the input of the softmax function is a K-dimensional vector z ∈ R

K , we can
guarantee the K-dimensional output vector p ∈ R

K which satisfies ‖p‖1 = 1.
It is obviously that p belongs to a K − 1 dimension simplex set �K−1. The
function f : RK → �K−1 denotes the mapping to calculate attention weights.

Further in order to guarantee sparse attention weights, [12] proposed the
sparsemax attention mechanism by introducing the projection operation to the
target simplex set, i.e.,

sparsemax(z) = arg min
p∈�K−1

‖p − z‖22. (6)

The optimal solution of problem (6) can be calculated in closed form [12], which
greatly simplifies the process of extending sparsemax attention mechanism to
multi-agent reinforcement learning algorithms.

4.2 γ-Sparsemax

Although sparse attention weights are obtained through the sparsemax mecha-
nism, but it cannot handle the degree of sparseness. For multi-agent reinforce-
ment learning algorithms, we can properly take advantages of the prior informa-
tion on the degree of mutual influence between the agents, which can significantly
accelerate the training process.

We introduce the general γ-sparsemax attention mechanism proposed in [16]
to our multi-agent sparse attention actor critic algorithm framework. The cor-
responding optimization problem is defined as

max(z) = max
i∈{1,2,··· ,K}

(zi) = sup
p∈�K−1

(pT z), (7)

where the subgradient ∂ max(z) = {e, ei = 1, e−i = 0
∣∣i ∈ arg maxi∈{1,2,··· ,K} zi}.

The subgradient ∂ max(z) maps z to the K − 1 dimension simplex set. However

SparseMAAC 103

this mapping can not be directly used due to its discontinuity, so that a strongly
convex regularizer can be introduced. We can define the new mapping ΠΩ :
R

K → �K−1 by solving the following optimization problem:

ΠΩ(z) = arg max
p∈�K−1

pT z − γΩ(p), (8)

where Ω(p) denotes a strongly convex function. When Ω(p) = 1
2‖p‖22, the

γ-sparsemax attention mechanism can be calculated by

γ-sparsemax(z) = ΠΩ(z) = arg max
p∈�K−1

∥∥∥∥p − z

γ

∥∥∥∥
2

2

. (9)

The coefficient γ can be considered as the sparsity control hyperparameter.
Smaller γ leads to more sparsity attention weights. This should be the first
work to introduce self-adjusted sparsity machanism into multi-agent reinforce-
ment learning algorithm, while a priori information about the degree of influence
between agents can be introduced to guidance adjusting γ.

4.3 Multi-agent Sparse Attention Actor Critic

The MAAC algorithm modifies the framework of MADDPG [10] by replacing
the deep deterministic policy gradient (DDPG) [8] with the soft actor critic
(SAC). The Q-value function of each agent not only depends on its own state
and actions, but also the strategies of all other agents which are utilized as
additional information, i.e.,

Qπ
i (s,a) = Qi(s, a1, · · · , an)|ai=πi(si). (10)

For the agent i, all other agents have the same influence on each agent’s decision-
making procedure. The attention mechanism for constructing special structured
Q-valued function plays the main role in MAAC, which indicates that different
weights are used for different agents in the training procedure.

The attention distribution are usually continuous in MAAC, which means
that every agent keeps attention on all other agents. However, in many practical
applications, the agent’s attention has some selective manner. For example, in
soccer game, the striker doesn’t need to pay attention to his own goal keeper
while attacking. Therefore, the attention mechanism needs to extended with
sparsity. In this paper, to introduce the sparse attention tactics, we propose the
multi-agent sparse attention actor critic (SparseMAAC) algorithm. The main
procedure is presented in Algorithm 1, and the key idea of SparseMAAC is shown
in Fig. 1(a).

To calculate the attention weight of the remaining agents to the agent i,
the attention module receives the observations s = {s1, s2, · · · , sn} and actions
a = {a1, a2, · · · , an} for all agent. Then all the data is divided into two parts,
which belong to the agent i and not belong to the agent i, and the latter is
denoted as −i, and j is used to index in −i.

104 W. Li et al.

Since the observation of the agent in reinforcement learning often contains a
lot of noise, we, like the MAAC algorithm, first encode the agent’s observation-
action pair, then pass a bilinear mapping, and the final scaled output is used as
input of the γ-sparsemax algorithm:

αj = γ-sparsemax
(

(WkE−i)T (Wqei)√
d

)
j

, (11)

where d is the dimension of the encoding of tuple (s, a), Wk,Wq ∈ R
n×d, E−i ∈

R
d×(n−1). The j-th column ej ∈ R

d×1 of E−i is the encoding of tuple (sj , aj)
and ei ∈ R

d×1 is the encoding of tuple (si, ai). We also have used the multiple
attention heads to explicitly cluster the coding on the semantic level, so that the
learned attention weight is more representative.

Fig. 1. (a) Multiple sparse attention head in SparseMAAC. (b) Grouped Cooperative
Treasure Collection. The number in the circle represents group.

5 Experiments

5.1 Environments

We evaluation the performance of the proposed algorithm for two aspects.
Firstly, we demonstrate the sparse attention can improve the final performance
of the algorithm and make the results more interpretable in a multi-agent envi-
ronment. Second, the affects of different attention sparsity are analyzed.

In the multi-agent literature, Cooperative Treasure Collection and Rover-
Tower are usually used for evaluation But, only the latter one is specifically
designed to verify the effectiveness of the attention mechanism. Therefore, we
choose two environment in our experiments, i.e. Rover-Tower and a modified
Cooperative Treasure Collection.

SparseMAAC 105

Algorithm 1. SparseMAAC
1: Input: initialize policy parameters θi, target policy parameters θ̄i centralized Q-

function paramaters φ and centralized target Q-function paramaters φ̄ for every
agent, initialize replay buffer D and E parallel environments

2: for m = 1 to nepisodes do
3: Reset all environments and get sm

i,1 for each agent i in each environment
4: for t = 1 to min(Tdone, Tmax per episode) do
5: Select action am

i,t ∼ πθi(·|sm
i,t) for each agent i in each environment

6: Each agent i excutes action am
i,t in each environment

7: Each agent i observes sm
i,t+1 and get rm

i,t+1 in each environment
8: Store transition (sm

t , am
t , rm

t+1, s
m
t+1) for all environments in D

9: Randomly sample a batch of transion (st, at, rt+1, st+1) from D
10: for each agent i do
11: Calculate Qi

targ by 3.4
12: Calculate critic loss Li(φ) = 1

m

∑m
j=1(Q

i
targ − Qi(sj , a

1
j , · · · , aN

j))2

13: Calculate overall critic loss L(φ) = 1
N

∑N
i=1 Li(φ) and update critic

14: for each agent i do
15: Update actor using sampled policy gradient 3.4

16: Update target critic network parameters φ̄
17: Update target policy network parameters θ̄i and for each agent i

18: Output: Trained policy parameters θi for each agent i

Rover-Tower. The configuration is the same as the experiment in MAAC [6],
where each two agents are teamed up and only one agent in each team can move
For the agent which can move, the immovable agent in other teams has little
influence on its policy. Therefore, this environment can also be used to verify
the effectiveness of sparse attention.

Grouped Cooperative Treasure Collection. We design a new collaborative envi-
ronment show as Fig. 1(b), which consists of two four-agent groups. For each
group (1 or 2), there are two deposits (biggest circles), two collectors (gray
circles) and two treasures (smallest circles). Each group can be seen as a mini
version of the original environment. All entities are moveable except for the trea-
sures. The collectors’ task is to collect the treasure and place it in the deposit
of the same color. And the task of deposits is to store as many treasures as pos-
sible. The agent can not only observe the agent from the same group, but also
see different groups. To verify the effectiveness of sparse attention, the tasks of
different groups are independent. Therefore, the optimal strategy should be with
sparse attention. The complexity of the environment is the same as the original
environment.

5.2 Settings

To verify the effectiveness of sparse attention, we compare the proposed Sparse-
MAAC algorithm with the MAAC. For fairness, we keep all the hyperparameters

106 W. Li et al.

in the original paper to obtain its best performance. Besides, in order to demon-
strate the influence of different sparsity, we further compare the sparsemax with
different sparsity (γ = 1, 0.1, 0.01) in our SparseMAAC, as well as the softmax
in MAAC.

5.3 Results and Analysis

Firstly, we demonstrate that the proposed γ-sparsemax function can produce
the sparse attention weight. Figure 2 shows the attention weight of agent-0 in
Rover-Tower and Grouped Cooperative Treasure Collection by MAAC (softmax)
and SparseMAAC (sparsemax, γ = 0.01, 0.1, 1). The x axis (0–1) stands for the
value of attention, the y axis (0–120000) stands for the iteration number, and
the height stands for the attention of agent-0 on other agents. It can be seen
that, the output of MAAC (softmax) is all greater than 0 and is concentrated
around a certain value (about 0.15 in Fig. 2(a)). So, the agents in MAAC have
similar attention for every other agents. But, the attention value of SparseMAAC
(sparsemax) are partially 0. The smaller γ is, the more sparse the attention
distribution is. Therefore, the agents can learn a sparse policy via SparseMAAC,
and treat other agents selectively.

Impact of Sparse Attention. Figure 3(a) shows the performance of the pro-
posed SparseMAAC algorithm with MAAC in the Rover-Tower environment by
the mean episode rewards. Obviously, the proposed SparseMAAC algorithm is
significantly superior to MAAC, not only in terms of mean rewards, but also
the convergence speed. The phenomenon proofs that the introduced attention
sparsity can help the agent quickly filter out useful information in the early stage
of training. Thus, it speeds up the training process with a better results.

Figure 3(b) shows the performance of the proposed SparseMAAC algorithm
with MAAC in the Grouped Cooperative Treasure environment by the mean
episode rewards. Because each agent can observe all other agents, the perfor-
mances of compared algorithms are nearly the same. But the convergence speed
of the proposed SparseMAAC is still faster than the MAAC algorithm. Sparse-
MAAC can select useful agents with the sparse attention, so it achieve similar
mean episode reward with shorter training time and fewer computations.

Impact of the Sparsity. In this part, we delve into the effectiveness of dif-
ferent sparsity on the performance of the proposed algorithm. We choose the
Rover-Tower environment for discussion, where the agents are paired in pairs.
For an agent, there is only one agent which has the greatest impact on it.
Figure 4 visualizes the attention results of the paired relationship in Rover-
Tower. We first train all the algorithms for 50k epochs, and then let each
agent randomly sample an observation from the environment and calculate
the corresponding attention weight. MAAC and SparseMAAC both adopt the
multi-head attention mechanism, and 4 attention heads are totally used in our
experiments. The first column in Fig. 4 stands for the ground truth, the 2–5

SparseMAAC 107

(a)

(b)

Fig. 2. (a) The distribution of the attention weights of the 7(=8−1) agents outputted in
the Grouped Cooperative Treasure Collection environment with the number of train-
ing iterations. (b) The distribution of the attention weights of the 7(=8−1) agents
outputted in the Rover-Tower environment with the number of training iterations.

108 W. Li et al.

(a)

(b)

Fig. 3. In the legend, softmax represents the MAAC algorithm, and γ-sparsemax rep-
resents the SparseMAAC algorithm with different γ values. (a) Mean episode rewards
(of 5 runs) of each agent on Grouped Cooperative Treasure Collection environment.
(b) Mean episode rewards (of 3 runs) of each agent on Rover-Tower environment. The
shaded part represents the standard deviation.

Fig. 4. Attention thermodynamic map in Rover-Tower environment. Attention weight
is calculated by randomly sampling an observation. The darker the color, the greater
the attention weight. Since each agent does not calculate the attention with itself, the
main diagonal of the squares in color columns is filled with twill. (Color figure online)

SparseMAAC 109

columns stand for different head attention, and the 1–4 row stand for MAAC
(softmax), SparseMAAC(γ = 0.01, 0.1, 1).

From Fig. 4, it can be seen that the smaller the γ value, the more the number
of white grids. That that the obtained attention weight is more sparse. This
also coincides with the results from Fig. 2. We can see that our SparseMAAC
algorithm has the trend to concentrate the true diagonal elements. It is most
noticeable when the γ is 1. It is worth noting that the third attention head differs
greatly from the other three modes in the fourth column. This is because different
attention heads learn different level of environment, due to the advantages of the
multi-head attention mechanism. In our experiments, the third attention head
represents the overall information more than other heads.

6 Conclusion

In order to adjust the agent’s selective attention and reduce the complexity of
relationship between agents, we introduce the sparse attention mechanism into
multi-agent reinforcement learning via a sparsemax function, and propose the
Sparse Multiple Attention Actor Critic (SparseMAAC) algorithm. The proposed
SparseMAAC can learn a selective policy with sparse attention, and detect help-
ful agent on the early stage of training procedure. This guarantees our Sparse-
MAAC with a better optimization routine and lower complexity. We also intro-
duce an adjustable scheme via a hyperparameter to control the sparseness of
attention. The proposed algorithm under different sparsity level is evaluated in
two different environments with MAAC. The results demonstrate that Sparse-
MAAC can achieve sparse attention distribution effectively. The experiment also
show that our SparseMAAC can not only exceed or be equal to the MAAC algo-
rithm, but also converge significantly faster than MAAC.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China (Grant No. 61702188, No. U1609220, No. U1509219 and No. 61672231).

References

1. Busoniu, L., Babuska, R., De-Schutter, B.: A comprehensive survey of multi-agent
reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(2),
156–172 (2008)

2. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for
direct perception in autonomous driving. In: IEEE International Conference on
Computer Vision, pp. 2722–2730 (2015)

3. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual
multi-agent policy gradients. In: 32nd AAAI Conference on Artificial Intelligence
(2018)

4. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290 (2018)

http://arxiv.org/abs/1801.01290

110 W. Li et al.

5. Haarnoja, T., et al.: Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905 (2018)

6. Iqbal, S., Sha, F.: Actor-attention-critic for multi-agent reinforcement learning.
arXiv preprint arXiv:1810.02912 (2018)

7. Jiang, J., Lu, Z.: Learning attentional communication for multi-agent cooperation.
arXiv preprint arXiv:1805.07733 (2018)

8. Lillicrap, T., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

9. Littman, M.: Markov games as a framework for multi-agent reinforcement learning.
In: International Conference on Machine Learning, pp. 157–163 (1994)

10. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: Advances in Neu-
ral Information Processing Systems, pp. 6379–6390 (2017)

11. Luong, M.T., Pham, H., Manning, C.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

12. Martins, A., Astudillo, R.: From softmax to sparsemax: a sparse model of attention
and multi-label classification. In: International Conference on Machine Learning,
pp. 1614–1623 (2016)

13. Matignon, L., Jeanpierre, L., Mouaddib, A.I.: Coordinated multi-robot exploration
under communication constraints using decentralized Markov decision processes.
In: 26th AAAI Conference on Artificial Intelligence (2012)

14. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

15. Mousavi, S., Schukat, M., Howley, E., Borji, A., Mozayani, N.: Learning to predict
where to look in interactive environments using deep recurrent Q-learning. arXiv
preprint arXiv:1612.05753 (2016)

16. Niculae, V., Blondel, M.: A regularized framework for sparse and structured neural
attention. In: Advances in Neural Information Processing Systems, pp. 3338–3348
(2017)

17. Niv, Y., Daniel, R., Geana, A., Gershman, S., Leong, Y., Radulescu, A., Wilson,
R.: Reinforcement learning in multidimensional environments relies on attention
mechanisms. J. Neurosci. 35(21), 8145–8157 (2015)

18. Oh, J., Chockalingam, V., Singh, S., Lee, H.: Control of memory, active perception,
and action in minecraft. arXiv preprint arXiv:1605.09128 (2016)

19. OpenAI: Openai Five (2018). https://blog.openai.com/openai-five/
20. Peng, P., et al.: Multiagent bidirectionally-coordinated nets for learning to play

starcraft combat games. arXiv preprint arXiv:1703.10069 (2017)
21. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. Wiley, Hoboken (2014)
22. Shoham, Y., Powers, R., Grenager, T.: If multi-agent learning is the answer, what

is the question? Artif. Intell. 171(7), 365–377 (2007)
23. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction (2018)
24. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods

for reinforcement learning with function approximation. In: Advances in Neural
Information Processing Systems, pp. 1057–1063 (2000)

25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

26. Williams, R.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

27. Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual
attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1810.02912
http://arxiv.org/abs/1805.07733
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1612.05753
http://arxiv.org/abs/1605.09128
https://blog.openai.com/openai-five/
http://arxiv.org/abs/1703.10069

	SparseMAAC: Sparse Attention for Multi-agent Reinforcement Learning
	1 Introduction
	1.1 Multi-agent Deep Reinforcement Learning
	1.2 Attention Mechanism in Multi-agent Reinforcement Learning

	2 Related Work
	2.1 Sparse Attention Mechanism
	2.2 Attention Mechanism in Reinforcement Learning

	3 Preliminaries and Backgrounds
	3.1 Markov Decision Process and Markov Game
	3.2 Deep Q-Network
	3.3 Vanilla Policy Gradient and Actor Critic
	3.4 Soft Actor Critic

	4 Algorithm Framework: SparseMAAC
	4.1 Sparsemax
	4.2 -Sparsemax
	4.3 Multi-agent Sparse Attention Actor Critic

	5 Experiments
	5.1 Environments
	5.2 Settings
	5.3 Results and Analysis

	6 Conclusion
	References

