
Can language agents be alternatives to PPO? A Preliminary
Empirical Study On OpenAI Gym

Junjie Sheng jarvis@stu.ecnu.edu.cn
School of Computer Science and Technology
East China Normal University, Shanghai, China

Zixiao Huang zxhuang@stu.ecnu.edu.cn
School of Computer Science and Technology
East China Normal University, Shanghai, China

Chuyun Shen cyshen@stu.ecnu.edu.cn
School of Computer Science and Technology
East China Normal University, Shanghai, China

Wenhao Li liwenhao@cuhk.edu.cn
School of Data Science
The Chinese University of Hong Kong, Shenzhen, China

Yun Hua yunhua@stu.ecnu.edu.cn
School of Computer Science and Technology
East China Normal University, Shanghai, China

Bo Jin bjin@tongji.edu.cn
School of Software Engineering
Tongji University, Shanghai, China

Hongyuan Zha zhahy@cuhk.edu.cn
School of Data Science
The Chinese University of Hong Kong, Shenzhen, Shenzhen, China

Xiangfeng Wang xfwang@cs.ecnu.edu.cn
School of Computer Science and Technology
East China Normal University, Shanghai, China

ar
X

iv
:2

31
2.

03
29

0v
1

 [
cs

.A
I]

 6
 D

ec
 2

02
3

Abstract
The formidable capacity for zero- or few-shot decision-making in language agents

encourages us to pose a compelling question: Can language agents be alternatives to
PPO agents in traditional sequential decision-making tasks? To investigate this, we first
take environments collected in OpenAI Gym as our testbeds and ground them to textual
environments that construct the TextGym simulator. This allows for straightforward and
efficient comparisons between PPO agents and language agents, given the widespread
adoption of OpenAI Gym. To ensure a fair and effective benchmarking, we introduce 5
levels of scenario for accurate domain-knowledge controlling and a unified RL-inspired
framework for language agents. Additionally, we propose an innovative explore-exploit-
guided language (EXE) agent to solve tasks within TextGym. Through numerical experiments
and ablation studies, we extract valuable insights into the decision-making capabilities of
language agents and make a preliminary evaluation of their potential to be alternatives
to PPO in classical sequential decision-making problems. This paper sheds light on the
performance of language agents and paves the way for future research in this exciting domain.
Our code is publicly available at https://github.com/mail-ecnu/Text-Gym-Agents.

1. Introduction

Proximal policy optimization (PPO; Schulman et al., 2017) is a representative traditional
reinforcement learning (RL) method, that attains or exceeds human decision-making per-
formance with a large number of environment interactions in diverse sequential decision
tasks (Jaderberg et al., 2019; Mankowitz et al., 2023), and has been treated as a popular choice
for learning-based decision-making. For example, when we face a CliffWalking task (Brock-
man et al., 2016a), our first attempt may be taking PPO as a try. Notably, researchers
sometimes seek sub-optimal policies that solve tasks with fewer interactions, prioritizing
efficiency over optimal performance. However, PPO generally requires a significant number
of interactions with the environment. In contrast, Large language models (LLMs; Vaswani
et al., 2017; Brown et al., 2020; Devlin et al., 2019; OpenAI, 2023) exhibit formidable zero-
or few-shot decision-making capabilities based on multiple LLM calls for reasoning (Creswell
et al., 2023; Wu et al., 2022; Yao et al., 2022b; Shinn et al., 2023) or manipulating internal
memory (Guu et al., 2020; Park et al., 2023; Qian et al., 2023; Xu et al., 2023) and other
external tools (Schick et al., 2023; Mialon et al., 2023; Qin et al., 2023). Consequently, a
direct and inescapable question arises:

Can language agents be alternatives to PPO agents in traditional
sequential decision-making tasks?

A plethora of environments have been proposed to assess the decision-making capabilities
of language agents across domains, including text-games (Shridhar et al., 2021; Fan et al.,
2022), code execution (Hendrycks et al., 2021; Zheng et al., 2023), and real-world tasks (Yao
et al., 2022a; Zhou et al., 2023). Nonetheless, these environments, still in their formative
stages, mainly focus on natural language understanding instead of general sequential decision-
making. To this end, we adopt environments gathered by OpenAI Gym, the often-used
sequential decision environments in RL, as our testbed. To evaluate the performance of
language agents, we first ground the environments to texts with LLMs and propose a

2

https://github.com/mail-ecnu/Text-Gym-Agents

Can language agents be alternatives to PPO?

pioneering platform, TextGym. Due to the continuous advancements integrated into OpenAI
Gym environments, TextGym not only enables a reliable and exhaustive comparison between RL
and language agents in terms of performance, sample efficiency, and generalizability but also
involves, in a light-weight manner, the critical challenges inherent to existing environments
specifically designed for language agents, including complex reasoning, long planning horizons,
and exploration of high-dimensional policy spaces.

Nonetheless, evaluating language agents’ decision-making capabilities (to decide which
agents to use) in TextGym, which contains a set of classic sequence decision problems, with
efficiency and fairness is challenging due to two factors. On the one side, varying degrees
of domain knowledge are supplied to LLMs by different language agents while forming
decisions, ranging from zero-shot prompting (Kojima et al., 2022), fine-grained few-shot (or
in-context) examples (Du et al., 2023), to coarse-grained expert guidelines (Wang et al.,
2023a); conversely, disparate language agents equip LLMs with distinct cognition skills, such
as thinking (Wei et al., 2022), memorizing (Park et al., 2023), and reflecting (Shinn et al.,
2023), with blurred boundaries in different algorithmic frameworks. We shall expound upon
these factors, i.e., domain knowledge, and algorithmic frameworks individually.

Firstly, the LLM prompting of language agents frequently incorporates disparate degrees
of domain knowledge. For instance, Zero-shot-CoT (Kojima et al., 2022) merely appends
“Let’s think step by step” prior to each response, devoid of any task-related knowledge. In
contrast, ELLM (Du et al., 2023) provides ground-truth examples in each round of goal
generation, exemplified by “Q: You see water, grass, cow, and diamond. You are targeting
grass. You have in your inventory plant. What do you do? A: Drink water.” Furthermore,
Voyager (Wang et al., 2023a) offers expert guidance for attaining elevated scores, as illustrated
by “I may sometimes need to repeat some tasks if I need to collect more resources to complete
more difficult tasks. Only repeat tasks if necessary.” Intuitively, varying domain knowledge
levels will unavoidably influence language agents’ performance. Consequently, regulating the
extent of domain knowledge is vital for ensuring fair comparisons.

Secondly, to enhance the decision-making ability of LLMs, different language agents
bestow upon them various cognitive skills via the incorporation of external modules. CoT (Wei
et al., 2022) introduces a series of intermediate reasoning steps in the prompt, considerably
improve LLMs’ capacity to conduct complex reasoning; Generative Agents (Park et al.,
2023) delineate an architecture that expands an LLM to maintain the agent’s experiences in
natural language, synthesize memories over time, and dynamically retrieve them to plan more
efficient behavior; Reflexion (Shinn et al., 2023) proposes a novel framework to endow LLMs
with self-reflection capabilities, thereby facilitating planning via trial-and-error analogous
to RL. However, the boundaries between different cognitive skills are blurry, with reflection
potentially encompassing both thinking and memorization processes. Simultaneously, different
language agents employ distinct algorithmic frameworks in pursuit of identical cognitive
skills. This status quo hinders the conduction of fair comparisons and thorough ablation
studies of diverse language agents. As such, it is imperative to integrate extant language
agents into a unified algorithmic framework.

This paper addresses the above challenges and assesses the decision-making capabilities
of language agents in a more efficient and fair manner. More concretely, we introduce a
hierarchy of domain knowledge, comprising 5 levels, ranging from the absence of domain
knowledge to the provision of expert strategies required for task completion. Additionally,

3

drawing inspiration from the RL, we dissect the language agents assessed in this paper into
three components: actor, critic, and learner, thereby assimilating these agents within a
unified algorithmic architecture. Lastly, we put forth an innovative EXplore-Exploit-guided
language agent (EXE) devised to tackle partially observable, sparse reward tasks, which pose
significant challenges to all language agents examined herein. With numerical experiments
and ablation studies, we summarize the following important observations: 1) Language
agents have the potential of completing tasks in the TextGym for several environments
(i.e., Blackjack, Cartpole, CliffWalking, MoutainCar, and MoutainCarContinuous) while
failing at more challenging environments (i.e., Acrobot, LunarLander, and Taxi). 2) By
engaging in environmental interactions, the performance of language agents approaches levels
akin to those obtained via expert knowledge prompting. 3) Our proposed EXE achieves
higher performance compared to other language agents in the TextGym setting.

Remark 1: This paper presents a preliminary study that investigates the potential of lan-
guage agents in executing traditional sequential decision tasks, an area typically dominated by
PPO and other RL techniques. As a nascent field of inquiry, the decision-making capabilities
of language agents are still under-explored, particularly in the context of environments
like OpenAI Gym. In this exploratory phase, we aim to unveil the competencies of LLMs
in understanding and engaging with sequential decision-making processes. Our intent is
not to perform an exhaustive comparison with PPO, but rather to spark a dialogue on the
adaptability and evolution of language agents within this domain. We acknowledge the
limitations inherent in such an early-stage investigation, and any conclusions drawn are
intended to serve as a foundation for future, more comprehensive research. This work should
be interpreted as a stepping stone towards a broader understanding of the roles that language
agents can play in the realm of decision-based tasks and their potential to complement or, in
some instances, offer alternative solutions to conventional approaches.

2. Related Work

2.1 Related Benchmarks

As large language models (LLMs) have demonstrated remarkable capabilities in generalization
and planning, an array of executive benchmarks has been proposed to assess their proficiency.
Initial benchmarks primarily focused on text-based games such as ALFWorld (Shridhar et al.,
2021), Jericho (Hausknecht et al., 2020), and TextWorld (Côté et al., 2018).

Contemporary research endeavors have sought to appraise LLMs’ performance in numerous
real-world tasks beyond text games. Pioneering works like APPS (Hendrycks et al., 2021),
HumanEval (Chen et al., 2021), and MBPP (Austin et al., 2021) emphasize code execution
as a means to assess LLMs for functional correctness rather than text similarity. Subsequent
studies (Li et al., 2022; Zheng et al., 2023; Xu et al., 2022; Nijkamp et al., 2022) have adopted
this paradigm, further solidifying its prominence.

A multitude of games has been devised to investigate LLMs’ task-planning aptitude.
Examples include approaches utilizing the Minecraft (Zhu et al., 2023; Wang et al., 2023a,c)
to gauge LLMs’ efficacy in planning and decision-making. Tachikuma (Liang et al., 2023)
employs a TRPG game log to measure LLMs’ capacity to interpret and deduce intricate

4

Can language agents be alternatives to PPO?

interactions involving multiple characters and unanticipated objects. MindAgent (Gong et al.,
2023) introduces a virtual kitchen to evaluate LLMs’ planning and coordination competencies.

Additionally, several studies have constructed interactive settings that simulate real-world
scenarios. WebShop (Yao et al., 2022a) establishes a mock e-commerce website to assess
LLMs’ capabilities in product search and retrieval, while WebArena (Zhou et al., 2023)
provides a thorough website environment encompassing an array of domains.

Diverging from the aforementioned benchmarks, our research aims to ascertain whether
language agents can rival PPO in sequential decision-making tasks. Our primary focus is on
decision-making capabilities, rather than proficiency in processing textual information and
natural language understanding. To this end, we leverage environments curated by OpenAI
Gym as our experimental platforms. These environments are typified by their comparatively
lower-dimensional state and action spaces relative to conventional TextGames (Osborne
et al., 2022), thereby focusing on presenting challenges in exploration, sparse reward, and
stochastic dynamics crucial for decision learning, which renders them well-suited for assessing
the performance of PPO. To adapt language agents to these environments, we introduce
TextGym—a framework that transforms these environments into textual counterparts using
their documentation and GPT-4. This transformation process is generally feasible for
non-image-based environments. Should the language agents within TextGym demonstrate
competitive performance against PPO in the OpenAI Gym settings, it would suggest the
potential of language agents as viable alternatives to PPO.

2.2 Language Agents

LLM Agent Actor Critic LearnerPrompt Profile Action Instruction Memory
ChatGPT free-form single-path action - - -

CoT Wei et al. (2022) free-form single-path action - - -
SaP Press et al. (2022) structured-form single-path action - - -
ScP Wang et al. (2022) free-form multi-path action - - -

SPP Wang et al. (2023b) free-form multi-path action - - -
Reflexion Shinn et al. (2023) free-form single-path action short memory verbal/numerical-based Learn to exploit

EXE (Ours) free-form single-path action short memory verbal-based Learn to explore and exploit

Table 1: Summary of language agents in actor-critic-learner framework.

In recent months, numerous studies have emerged that consider pre-trained large language
models as agents for decision-making processes. Several of these works (Huang et al., 2022;
Kojima et al., 2022; De Peuter and Kaski, 2023) enable language agents to perform zero-shot
decision-making tasks. For instance, Kojima et al. (2022) employs a trigger phrase such as
“think step by step” to prompt language agents.

In addition to these, a multitude of research endeavors (Wei et al., 2022; Gao et al., 2023;
Press et al., 2022; Wang et al., 2022, 2023b,c; Sun et al., 2023; Shinn et al., 2023) seek to
develop more intricate prompts, allowing language agents to execute few-shot decision-making
tasks. Wei et al. (2022); Gao et al. (2023); Press et al. (2022) formulate specific chain-of-
thought and programming few-shot examples to guide the language model’s appropriate
behavior. Wang et al. (2022, 2023b) propose diverse action selection strategies to augment
decision quality through multiple-time queries.

5

Distinct from the aforementioned studies, Wang et al. (2023c); Sun et al. (2023); Shinn
et al. (2023) introduce innovative architectures to facilitate enhanced reasoning and decision-
making capabilities for agents, as well as improved action execution with feedback.

3. Problem Formulation

This paper aims to solve a set of sequential decision-making problems which each can be
characterized by a partially observable Markov decision process (POMDP; Sutton and Barto,
2018) M⟨S,A,P,R,Ω,O, γ⟩, by utilizing RL or language agents. For each problem, the
environmental state is denoted by s ∈ S. At each timestep t, the agent observes an observation
ot ∈ Ω based on the emission or observation function O (ot | st), which is a probability
distribution over observations conditioned on the current state st. The agent maintains a
belief state bt over the environmental states, which is updated based on the observation
ot and the previous action at−1. The agent then opts for an action at ∼ π (at | bt) ∈ A,
based on the general policy π : B ×A → [0, 1],∀i and the current belief state bt. This action
consequently leads to the subsequent state st+1 ∈ S according to the transition function
P (st+1 | st, at) and procures a scalar reward rt = R(st, at) ∈ R. The principal objective for
an agent is to determine a policy π that maximizes the total expected cumulative reward, J =
Eat∼π(·|bt),st+1∼P(·|st,at)[

∑T
t=1 γ

t−1rt(st, at)], via learning from transitions during interaction.
It is noteworthy that within the context of language agents, the state, observations, actions,
and rewards are manifested through textual representations.

4. Benchmark Design

This section presents a benchmark framework that facilitates the effective and fair comparison
of various language agents’ decision-making capabilities in classic sequential tasks. At the
same time, this framework juxtaposes their capacities against those of PPO in terms of
cumulative reward thereby addressing the core question raised at this paper’s outset: Can
language agents be alternatives to PPO agents in traditional sequential decision-making tasks?
More concretely, we elucidate upon the meticulous design process of TextGym, crafting a
dependable validation platform for language agents and RL in Section 4.1. Subsequently, we
propose a hierarchical domain knowledge framework, facilitating precise and fair comparison
of language agents through accurate prompt control in Section 4.2. Ultimately, we introduce
an RL-inspired unified algorithmic architecture, incorporating mainstream language agents,
thus rendering penetrative ablation studies feasible in Section 4.3.

4.1 TextGym: A Friendly Gym for Language Agents

We select OpenAI Gym (Brockman et al., 2016b) as our benchmark environment, owing to
its extensive utilization in the assessment of PPO and other RL agents. In order to render
Gym compatible with language agents, it is necessary to transform the environments into
text-based representations, i.e., TextGym. It should be noted that we presuppose language
agents possess access to the fundamental documentation of the environments. Concretely,
we use the environment description, including the observation space, action space, reward
function, and episode terminate conditions, for benchmarked environments in the official

6

Can language agents be alternatives to PPO?

documentation1 for the transformation. We construct TextGym by adding a translation
wrapper for OpenAI Gym. Specifically, the wrapper wraps each observation in a mixture of
“game description”, “goal description”, “action space description”, and “observation description”.
To speed up the translation, we take GPT-4 (OpenAI, 2023) to make the translation, and
the details are presented in Appendix A.1.

Remark 2: The assumption regarding the acquisition of documentation is justifiable, as
documents are typically accessible in real-world applications (Harbour et al., 2001; Brockman
et al., 2016a). By providing language agents with fundamental documentation, we emulate
a pragmatic situation in which the agent possesses an elementary comprehension of the
environment. This establishes the foundation for assessing language agents. In contrast
to the prevailing handcrafted few-shot examples and heuristic prompting techniques, our
assumption exhibits a higher degree of realism.

4.2 Hierarchical Control of Domain Knowledge and Scenario Formulation

This subsection addresses the issue of inequitable comparisons among language agents due
to unregulated domain knowledge in prompting. Specifically, we introduce a hierarchical
organization of domain knowledge, consisting of 5 levels, and employ it to devise corresponding
scenarios for regulating the domain knowledge utilized in prompting (see Appendix A.2 for
all pseudo-codes).

We define the first level of domain knowledge as a constraint where no external knowledge
is provided, and the situation created by this constraint is termed the Lv1:Zero Guid-
ance (De Peuter and Kaski, 2023; Chen et al., 2022). Achievable through a powerful, highly
generalizable agent, this level represents the ultimate goal for language agents. However, as
evidenced by our empirical studies and existing literature (Shinn et al., 2023), current agents
are considerably far from achieving this objective. Another constraint of domain knowledge
occurs when a human participant supplies valuable knowledge, expertise, or even optimal
policy descriptions, which we designate as the ultimate level of domain knowledge. The
situation created by this constraint is called the Lv5:Expert Guidance. This approach is
prevalent in contemporary language agent development. Nonetheless, human guidance is not
always reliable, and the significant reliance on it poses a major challenge when deploying
language agents to address general decision-making problems.

To facilitate the assessment of more practical scenarios, we propose 3 additional levels of
domain knowledge and corresponding scenarios, inspired by data-driven learning paradigms.
Firstly, informed by offline RL, experiences acquired through non-optimal policies can
serve as a form of domain knowledge. We label such experiences as the second level of
domain knowledge, and the situation created by this level is called the Lv2:Sub-optimal
Experience Guidance. Subsequently, influenced by RL, interactions with the environment
can be considered a unique form of knowledge to direct learning. We classify these interactions
as the third level of domain knowledge, and the situation created by this level is termed
the Lv3:Self-Guidance (as shown in Algorithm 1). The Lv3 scenario enables agents to
accumulate experience autonomously and implement corresponding enhancements. Finally,
we identify expert or optimal policy-derived experiences as the fourth level of domain

1. https://gymnasium.farama.org/.

7

https://gymnasium.farama.org/

4.3 RL-inspired Unified Algorithmic Framework for Language Agents

knowledge and the associated scenario as the Lv4:Optimal Experience Guidance, which is
informed by imitation learning. These 3 scenarios explicitly control domain knowledge by
imposing the same experience or number of interactions on language agents.

Algorithm 1 Pseudo-code for Level 3: Self-Guidance
Initialize agent M , knowledge memory Mk = ∅.
for episode = 1 to N do

Update agent M .update(Mk) ▷ Update agents with the knowledge
Collect a trajectory τ with M in the environment. ▷ Rollout
Append τ to Mk. ▷ Update the knowledge

end for

Viewed from another angle, the complexity of scenario formulation generally increases
with each level. Constructing a Lv1 scenario is relatively simple for any task. For Lv2 and
Lv4, the challenges involve formulating corresponding policies and implementing them in
real world or simulators to gather experiences. For Lv3, the challenge lies in deploying an
unstable and evolving policy to collect experiences and update accordingly. For example,
in autonomous driving, numerous sub-optimal trajectories can be readily obtained, thus
establishing Lv2. Lv3 requires the deployment of agents in real-world settings or simulators,
which are more difficult to develop. For Lv4, researchers must initially design expert policies
and subsequently collect expert trajectories. The final level, Lv5, necessitates that researchers
create knowledge explicitly to guide the agent in making safe and effective driving decisions.
Although humans perform well on the road, it remains an open question how to construct
human knowledge to assist language agents in accomplishing the task. This challenge becomes
even more difficult for tasks that humans cannot complete.

4.3 RL-inspired Unified Algorithmic Framework for Language Agents

In this subsection, we propose a comprehensive framework (Figure 1) for the conceptualization
of language agents, drawing inspiration from RL principles. The language agents consist
of three components: the actor, critic, and learner, where the actor is tasked with action
selection based on the current environmental state, the critic is responsible for assessing the
quality of actions executed by the actor, and the learner is accountable for updating the
actor and critic in response to feedback obtained from the environment.

Actor. The majority of existing language agents predominantly emphasize actor design.
Three components are involved for an actor: the profile, memory, and action instruction. The
profile delineates its features, the action instructions specify the ways to generate the final
action response, and the memory establishes its capacity for retaining historical information.
Despite the diversity of profile designs, we classify them according to their adopted style,
rather than concentrating on specific “magic words or prompts.” The prompt style represents
the manner in which researchers formulate actor’s prompts. Numerous prompting variants
have been proposed, which can be broadly categorized into machine language, free-form
verbal, and structured verbal. Machine language prompts direct the language agent to pro-
duce programs as opposed to natural language. Structured verbal prompts instruct language
agents to generate output in an organized fashion (e.g., SaP; Press et al., 2022) produces

8

Can language agents be alternatives to PPO?

Figure 1: Illustration of the actor-critic-learner framework. A typical language agent is
composed of 3 components: the actor, critic, and learner, each with its profile, memory, and
action instructions. Initially, the actor interacts with the environment, collecting a trajectory.
Subsequently, the critic evaluates the trajectory and provides feedback to the learner. Finally,
the learner offers suggestions to the actor based on the critique, forming an iterative process
of sampling and learning.

output in the “Follow up→Intermediate answer ” format), while free-form verbal prompts
impose no structural constraints. Regarding action instructions in the actor, two primary
methods exist single-path and multi-path action generation. The majority of agents employ
the former, which directly yields the current action, while a select few utilize multi-path
action generation, generating the actions in a tree-like structure. In terms of memorization,
most language agents do not directly retain environmental history, whereas Reflexion (Shinn
et al., 2023) and our proposed method permit agents to maintain a brief memory.

Critic. We classify critics in language agents into three categories: those without critics,
numerical-based critics, and verbal-based critics. Numerical-based critics assess the policy
by providing binary or scalar scores akin to RL critics. Capitalizing on the extensive input
space acceptable to language agents, verbal-based critics offer descriptions of the policy and
its performance, facilitating the conveyance of richer information.

Learner. As for learners, the majority of existing language agents do not incorporate learners
to autonomously adjust the actor. Learners can be differentiated based on their aims, either
learn to exploit or learn to explore and exploit. We provide a summary of existing language
agents within the context of this framework in Table 1. We posit that this categorization
enhances clarity in comparisons and fosters further development in language agent design.

Through the incorporation of language agents within the actor-critic-learner paradigm,
it becomes feasible to discern the salient features of language agents. Furthermore, this
paradigm facilitates the adaptation of concepts from RL in the development of language
agent architectures.

Remark 3: It is important to note that many language agents do not directly account
for the data collected in Lv2 to Lv4. To facilitate equitable comparisons, we incorporate a
default critic and learner component for these agents. The critic is the same as Reflexion
while the learner summarizes information as a suggestion to the actor. See Appendix A.3 for
details.

9

5. Explore-Exploit Guided Language Agent (EXE)

A
c
to

r

Critic
Profile of Critic: You are now an evaluator.
This is a game about: <Game Description> and the
trajectory is: <Trajectory>.

Short-term Memory:
0: <Observation Description>, Action, Reward
1: <Observation Description>, Action, Reward
…
t: <Observation Description>, Action, Reward’

The Suggestions to guide the trajectory is
Suggestions: […]

Action Instruction:
1. Describe the policy and summarize its performance;
2. Describe new information from the trajectory that can be exploited to
improve performance compared to the summarization memory;

Profile of Actor: Now you are completing a task.
The Game is about <Game Description>.
The current state is <State Description>, and a
description of all possible actions is as follows:
<Action Description>.

Action Instruction: Please choose an action in the action space.

Short-term Memory:
0: <Observation Description>, Action, Reward
1: <Observation Description>, Action, Reward
…
t: <Observation Description>, Action, Reward

Suggestions from the Learner:
1. Exploration: [try different actions]
2. Exploitation: [push towards the tilt direction]
3. Tradeoff: [explore more.]

Trajectory

Observation
and Reward

Action

Learner
Profile of Learner: You are an AI assistant that
help a human player win the following game. The Game
is about <Game Description>.

Long-term Memory:
Episode #0:
Criticism: The policy in this trajectory seems to be …, The
performance of the policy in this trajectory is

Action Instruction: Help the human player win the game in the last
episode. He has only 5 episodes left to try.

1. Summary insights of the game.
2. What information should the player obtain through exploration, and
how to make the exploration (exploration) in the next episode?
3. How we improve the policy to gain a higher performance (exploitation)
in the next episode?
4. The weight of the exploration and exploitation?

Insights,
Suggestions

Criticism

Insights from the Learner:
Insights on how to win the game is … Environment

Figure 2: Illustration of EXE in CartPole-v0, featuring 3 main components. Actor receives
insights and suggestions from the learner and interacts with the environment, critic evaluates
the trajectory generated by the actor based on the suggestions used by the actor. The
learner processes criticism from the critic and provides insights and suggestions to the actor.

Consider the cliff-walking scenario as an illustrative example: agents are initially unaware
of the locations of cliffs and the goal. It is, therefore, imperative that agents engage in
exploration within the environment to acquire this information. Subsequently, they must
leverage such information for exploitation to develop an optimal strategy. The principle of
maximum-entropy reinforcement learning (MaxEnt RL; Haarnoja et al., 2018) takes into
account both exploration and exploitation within its gradient propagation, demonstrating
commendable outcomes in scenarios characterized by partial observability and sparse rewards.
Inspired by this, we introduce the Explore-Exploit Guided Language Agent (EXE), designed
to direct the actor with a dual emphasis on exploration and exploitation, as illustrated in
Figure 2 and delineated in Algorithm 4.

Actor: The actor, a language model, consists of three primary components. Initially, it
accepts the game description, state, and action space description as input, analogous to
reinforcement learning configurations. Subsequently, a suggestions component receives input

10

Can language agents be alternatives to PPO?

from the learner prior to the commencement of each episode, corresponding to the gradient
descent and exploration framework in reinforcement learning. In addition to these elements,
the actor possesses a short-term memory module that retains experiences from the current
episode, analogous to the recurrent design in reinforcement learning policies. Utilizing these
components, the actor directly selects actions and engages with the environment.

Critic: The critic is characterized by a combination of memory, game description, trajectory,
suggestion, and critic instruction. The game description informs the critic of its environ-
mental context, while the trajectory provides the necessary information for evaluation. The
suggestion tells what the trajectory is for and what information should be noted. Upon
acquiring this information, the critic adheres to the instructions to generate criticism, which
characterizes the policy and extracts novel information accordingly. This criticism is subse-
quently transmitted to the learner.

Learner: The learner receives the game description and utilizes its memory to retain
the criticism provided by the critic. Prior to the initiation of each episode, the learner
processes the game description and its memory as the current state, adhering to instructions
that explicitly account for the number of episodes in order to offer suggestions regarding
1) exploration strategies, 2) exploitation methods, and 3) the optimal balance between
exploration and exploitation in subsequent episodes. These suggestions are then conveyed to
the actor. It should be noted that our EXE always generate suggestions even if there is no
trajectory obtained (Lv1 and Lv5).

6. Experiments

This section performs a series of experiments to assess the efficacy of our proposed EXE,
alternative language agents within the TextGym, and PPO agents within OpenAI Gym. Our
investigation seeks to address the following research questions: Q1: Are language agents
capable of achieving performance levels comparable to those of PPO? Q2: What is the
influence of domain knowledge control on language agent performance? Q3: How does the
design of a language agent affect its performance?

Environment and Scenario Configurations. Grounded environments include Clas-
sic Control (Acrobot-v1, CartPole-v0, MountainCar-v0 and MountainCarContinuous-v0),
Toy Text (Blackjack-v1, Taxi-v3, CliffWalking-v0), and Box2D (LunarLander-v2). Each
environment poses distinct challenges for agents, as outlined in Appendix A.1. Moreover, we
devise the 5-level domain knowledge controlling scenario for each environment. For Lv2, we
employ a random policy to gather 5 trajectories per environment, offering a rudimentary
approach to scenario creation. For Lv3, we allow each agent to interact with the environment
across 5 episodes. For Lv4, we train cutting-edge policies based on Tianshou (Weng et al.,
2022) for each environment to collect 5 expert trajectories. To create Lv5 scenarios, we
meticulously design the scenarios with human input. Specifically, we allocate 1 hour of effort
to develop scenarios for a single agent in each environment, randomizing the sequence of
language agents. These scenarios are crafted to evaluate the agents’ capacity to leverage

11

6.1 Investigating the potential of language agents.

information and perform in a variety of contexts.

Language Agent Configurations. For language agents lacking a critic or learner, we
implement them with default one, as elaborated in Appendix A.3. This implementation does
not modify their behavior in Lv1 and Lv5 scenarios but allows them to exploit information in
Lv2 to Lv4 scenarios. We implement agents using OpenAI APIs2, with all agents employing
the gpt-3.5-turbo0301 model if not specifically mentioned. For more details, we refer the
reader to Appendix A.3

We conduct extensive experiments involving all agents across every scenario within the
given environments with 5 seeds if not specifically mentioned. To assess performance across
diverse environments, we initially establish a solvability threshold l and a state-of-the-art
threshold h as in Table 3. The solvability threshold evaluates the extent to which the primary
objective3 of the task is achieved, while the optimal threshold is derived from RL agents
employed in constructing the Lv4 scenario. Subsequently, we normalize the performance r to
rn by setting rn = r−l

h−l if r > l while rn = −1 for r <= l. When the value surpasses 0, it
signifies that agents can access the solvability zone, and values nearing 1 indicate closeness
to state-of-the-art performance. We take the median performance of the agent across 5 seeds
its performance when not specifically mentioned. For a more detailed description of the
evaluation process, refer to Appendix A.5.

6.1 Investigating the potential of language agents.

Blackjack-v1

CartPole-v0

CliffWalking-v0

MountainCarContinuous-v0

MountainCar-v0

Acrobot-v1

Taxi-v3

LunarLander-v2

1.0
0.5

0.0
0.5

1.0

Solvability
PPO
Language Agents

(a) Solvability results across environments. (b) Solvability results across scenarios.

Figure 3: The radar graph and histogram comparing language agents and PPO. For Figure
3a, the gray area demarcates the solvability threshold, and beyond this region, the task can
be completed by the algorithm. Figure 3b displays the solvability, with PPO solving 6 out
of 8 environments and language agents solving 5. This figure further examines the agent’s
performance in specific scenarios, showing that language agents in Lv3 and Lv5 solve 4 games,
while others solve less.

2. https://openai.com/blog/openai-api.
3. E.g., the minimal return of reaching the goal without stepping into cliffs is set as the solvability threshold

of Cliffwalking.

12

https://openai.com/blog/openai-api

Can language agents be alternatives to PPO?

Figure 3a illustrates the median value of the normalized performance of the top-performing
language agents for each environment. It is evident that language agents can successfully solve
5 out of the 8 environments, demonstrating the potential of language agents. Furthermore,
in our experimental setup, language agents require no more than 5 episodes to achieve this
performance, whereas the PPO agent necessitates 20, 000 episodes. This highlights the
superior task-relevant interaction efficiency of language agents in comparison to RL.

However, there are 3 environments (LunarLander-v2, Taxi-v3, and Acrobot-v1) where
no language agents can attain the solvability threshold. This reveals that language agents
still face difficulties in addressing the challenges presented by these environments. Such tasks
typically involve extremely partial observations, complex and stochastic dynamics. We posit
that further advanced designs are needed to overcome these challenges and render the tasks
manageable.

Key Observations: 1) Language agents exhibit good performance in environments that
have simple dynamics. They can achieve the solvability threshold in these environments
with significantly fewer interactions or data compared to PPO. 2) Additional efforts are
required to design language agents designed to achieve similar performances to PPO in more
challenging TextGym environments.

6.2 Examining the Impact of Scenario Variations

Figure 3b presents the number of environments that can be solved for each scenario. It is
evident that agents in Lv3 and Lv5 outperform their counterparts, successfully solving 4/8
environments in the median performance. Agents in Lv1, Lv2, and Lv4 can only solve 2/8
environments indicating the zero-, sub-optimal, and optimal experience guidance are less
helpful in achieving great performance in the median.

Key Findings: The Lv3 scenario is more effective than others and should be prioritized
when designing the prompts.

6.3 Exploring Language Agents Choice

Given a specific scenario, which language agent should be preferred? Figure 4a
displays the average performance across all solvable environments for each language agent
under different scenario levels. It is evident that the proposed EXE significantly surpasses
other agents in the Lv3 scenario, emphasizing the importance of active exploration and
exploitation in this context. In the Lv1, Lv2, Lv3 and Lv5 scenario, EXE and Self-Consistency
achieve similar performance and are not outperformed by other agents significantly. Thus
EXE is generally preferred.

Given a specific environment, which language agent should be preferred? We
visualize the maximal performance across scenarios that each language agent can achieve
for the environments in Figure 4b. EXE solves 4 environments while others can not solve
more than 3 environments, demonstrating the superiority of our method. See Appendix B
for extensive case studies.

13

6.4 Case Study between EXE and Reflexion

1 2 3 4 5

Levels

EXE(Ours)

Reflexion

CoT

SPP

Self-Ask

Self-Consistency

Naive-Actor

PPO

La
ng

ua
ge

 a
nd

 P
PO

 A
ge

nt
s

-0.67 -0.66 -0.24 -0.67 -0.67

-0.84 -0.80 -0.80 -0.79 -0.70

-0.70 -0.84 -0.82 -0.68 -0.86

-0.70 -0.86 -0.84 -0.85 -0.69

-0.80 -1.00 -0.81 -0.84 -0.61

-0.65 -0.68 -0.78 -0.66 -0.66

-0.78 -0.80 -0.80 -0.84 -1.00

0.45 0.45 0.45 0.45 0.45

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Av
er

ag
e

Pe
rf

or
m

an
ce

(a) Average performance across environments.

Blackjack
-v1

CartPole
-v0

CliffWalking
-v0

Mountain
Car-v0

MountainCar
Continuous-v0

Environments

EXE(Ours)

Reflexion

CoT

SPP

Self-Ask

Self-Consistency

Naive-Actor

PPO

La
ng

ua
ge

 a
nd

 P
PO

 A
ge

nt
s

0.60 0.16 0.39 -1.00 0.93

0.70 -1.00 -1.00 0.34 -1.00

0.50 0.05 -1.00 -1.00 -1.00

0.40 0.08 -1.00 -1.00 -1.00

0.90 0.18 -1.00 -1.00 -1.00

0.80 0.19 0.35 -1.00 -1.00

0.80 -1.00 -1.00 -1.00 -1.00

0.80 1.00 1.00 0.97 -1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

M
ax

im
um

 P
er

fo
rm

an
ce

(b) Maximum performance across levels.

Figure 4: Heatmap for the performance of language agents in different scenarios and
environments.

Key Findings: 1) In the Lv3 scenario, EXE outperforms other agents due to its active
exploration and exploitation capabilities. 2) In environments that are solvable for language
agents, EXE surpasses other agents with the ability to solve 4 out of 5 environments.

6.4 Case Study between EXE and Reflexion

EXE and Reflexion are both specifically designed for Lv3, however their performances diverge.
Figure 5 and 6 visualize their learning processes. Reflexion does not learn to avoid cliff
in CliffWalking-v0 and fails to reach the goal in MoutainCarContinuous-v0. While EXE
learns to improve median performances reach to the solvability threshold at the last episode
for the two environments.

(a) The performance of EXE in Lv3 scenario. (b) The performance of Reflexion in Lv3 scenario.

Figure 5: The performance of EXE and Reflexion in CliffWalking-v0 at Lv3.

14

Can language agents be alternatives to PPO?

(a) The performance of EXE in Lv3 scenario. (b) The performance of Reflexion in Lv3 scenario.

Figure 6: The performance of EXE and Reflexion in MountainCarContinuous-v0 at Lv3
with 5 successive episodes.

7. Conclusion

This paper investigates the potential of Language Agents as alternatives to PPO. We propose
to ground OpenAI Gym to TextGym and assess language agents’ capabilities in approaching
PPO. We also propose domain knowledge control and a unified agent design framework
to make a comprehensive evaluation. Moreover, we present a novel language agent, EXE,
inspired by the exploration and exploitation principles inherent in RL. EXE demonstrates
superior performance in certain scenarios compared to other language agents. We conclude
by outlining many key insights regarding both language agent design and domain knowledge
incorporation, which we believe will contribute to a deeper understanding of language agents
and inspire further research in this domain.

15

REFERENCES

References

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with
large language models. arXiv preprint arXiv:2108.07732, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016a.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. In NeurIPS, 2020.

Annie Chen, Archit Sharma, Sergey Levine, and Chelsea Finn. You only live once: Single-
life reinforcement learning. Advances in Neural Information Processing Systems, 35:
14784–14797, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al.
Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine,
James Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy
Tay, and Adam Trischler. Textworld: A learning environment for text-based games. CoRR,
abs/1806.11532, 2018.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. In ICLR, 2023.

Sebastiaan De Peuter and Samuel Kaski. Zero-shot assistance in sequential decision problems.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 11551–
11559, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In NAACL-HLT (1), 2019.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel,
Abhishek Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with
large language models. In ICML, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge. Advances in Neural Information Processing
Systems, 35:18343–18362, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference
on Machine Learning, pages 10764–10799. PMLR, 2023.

16

Can language agents be alternatives to PPO?

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong
Zheng, Song-Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. Mindagent: Emergent
gaming interaction. arXiv preprint arXiv:2309.09971, 2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval
augmented language model pre-training. In ICML, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

M González Harbour, JJ Gutiérrez García, JC Palencia Gutiérrez, and JM Drake Moyano.
Mast: Modeling and analysis suite for real time applications. In Proceedings 13th Euromicro
Conference on Real-Time Systems, pages 125–134. IEEE, 2001.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan.
Interactive fiction games: A colossal adventure. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 7903–7910, 2020.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with apps. NeurIPS, 2021.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In ICML, 2022.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Gar-
cia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al.
Human-level performance in 3d multiplayer games with population-based reinforcement
learning. Science, 364(6443):859–865, 2019.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. In NeurIPS, 2022.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, 2022.

Yuanzhi Liang, Linchao Zhu, and Yi Yang. Tachikuma: Understading complex interac-
tions with multi-character and novel objects by large language models. arXiv preprint
arXiv:2307.12573, 2023.

Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin
Paduraru, Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, et al.
Faster sorting algorithms discovered using deep reinforcement learning. Nature, 618(7964):
257–263, 2023.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru,
Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz,
et al. Augmented language models: a survey. arXiv preprint arXiv:2302.07842, 2023.

17

REFERENCES

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn
program synthesis. In The Eleventh International Conference on Learning Representations,
2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Philip Osborne, Heido Nõmm, and André Freitas. A survey of text games for reinforcement
learning informed by natural language. Transactions of the Association for Computational
Linguistics, 10:873–887, 2022. ISSN 2307-387X. doi: 10.1162/tacl_a_00495. URL
http://dx.doi.org/10.1162/tacl_a_00495.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv
preprint arXiv:2304.03442, 2023.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 2023.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng,
Yufei Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. arXiv
preprint arXiv:2304.08354, 2023.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal
of Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv
preprint arXiv:2303.11366, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote, Yonatan Bisk, Adam Trischler, and
Matthew Hausknecht. ALFWorld: Aligning text and embodied environments for interactive
learning. In ICLR, 2021.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. arXiv preprint arXiv:2305.16653, 2023.

18

http://dx.doi.org/10.1162/tacl_a_00495
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

Can language agents be alternatives to PPO?

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language
models. arXiv preprint arXiv:2305.16291, 2023a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. arXiv preprint arXiv:2203.11171, 2022.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleash-
ing cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. arXiv preprint arXiv:2307.05300, 2023b.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan
and select: Interactive planning with large language models enables open-world multi-task
agents. arXiv preprint arXiv:2302.01560, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
In NeurIPS, 2022.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang,
Yi Su, Hang Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement
learning library. Journal of Machine Learning Research, 23(267):1–6, 2022. URL http:
//jmlr.org/papers/v23/21-1127.html.

Tongshuang Wu, Michael Terry, and Carrie Jun Cai. AI chains: Transparent and controllable
human-AI interaction by chaining large language model prompts. In CHI, 2022.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic
evaluation of large language models of code. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming, pages 1–10, 2022.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang
Liu. Exploring large language models for communication games: An empirical study on
werewolf. arXiv preprint arXiv:2309.04658, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards
scalable real-world web interaction with grounded language agents. In NeurIPS, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.03629, 2022b.

19

http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html

REFERENCES

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei
Shen, Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with
multilingual evaluations on humaneval-x. arXiv preprint arXiv:2303.17568, 2023.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for
building autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang,
Bin Li, Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and Jifeng Dai. Ghost in
the minecraft: Generally capable agents for open-world environments via large language
models with text-based knowledge and memory. arXiv preprint arXiv:2305.17144, 2023.

20

Can language agents be alternatives to PPO?

Supplementary Material

Table of Contents
A Experiments Details 21

A.1 Environments Details . 21

A.2 Scenario Details . 23

A.3 Details of Language Agents . 24

A.4 Details of PPO agent . 25

A.5 Evaluation Details . 26

B Extensive Results 27

B.1 Absolute Performance Comparisons . 27

B.2 EXE without the game description . 28

B.3 EXE in more environments . 32

B.4 Missing Case Studies . 33

Appendix A. Experiments Details

A.1 Environments Details

We summarize the environments of TextGym. We take the environments collected by OpenAI
Gym as our backbone environments and employ GPT-4 (OpenAI, 2023) for the grounding
procedure. OpenAI Gym provides exhaustive documentation elucidating the essential con-
cepts of each environment. Initially, we develop a code template (Appendix A.1) predicated
on the CartPole-v0 environment. This template encompasses three classes: ObsTransla-
tor, GameDescriber, and TransitionTranslator. The ObsTranslator is responsible for
converting each observation into a textual description, while the GameDescriber offers an
introduction and delineates the objectives of the game. The TransitionTranslator grounds
the observation, action, reward, and consecutive observation in a textual format. Upon
completion of the code template, we adhere to the generation process illustrated in Figure 7 to
ground additional environments. For each environment, we supply GPT-4 with the pertinent
documentation and instruct it to generate the translation code in Python format. Utilizing
our manually crafted code example, GPT-4 generates the remaining environments in a con-
sistent manner. This grounding ensures that our environments obviate the need for GPT-4
queries during sampling, substantially reducing temporal and financial expenditures. In
essence, we manually craft one environment and execute a single query for each environment
translation, rendering our grounding process both efficacious and economical. To ground
each environment, we first devise an example translation code as follows. Then we adopt
GPT-4 to verify the code does not introduce additional information compared to the original
document. After that, GPT-4 is further taken to ground all other environments as Figure 7.

21

A.1 Environments Details

Description
The MountainCar-v0 is a deterministic MDP…
Observation Space
The observation is a np.ndarray with shape (2,) …

Please use Python code to translate the
environment into an environment described in
the text based on the above task document. I can
solve tasks using an LLM that handles text input.
Below is a Python code template…

Grounded Cart Pole-V0 Code:
class BasicLevelTranslator:
class GameDescriber:

Grounded Mountain Car Code:
class BasicLevelTranslator:
class GameDescriber:

Document

Instruction

Code Snippet

Response

C
o

n
tr

o
l

B
o

x
2D

Toy Text

Figure 7: Illustration of grounding process. The left side of the figure presents sample target
grounding environments, while the right side details the grounding process. Specifically,
GPT-4 is provided with the target environment document, general grounding instructions,
and a code example for grounded results in another environment. The code generated by
GPT-4 is then considered the grounded output.

Listing 1: The language grounded CartPole-v0 example.
class ObsTranslator:

def __init__(self,):
pass

def translate(self, state):
cart_position, cart_velocity, pole_angle, pole_angular_velocity = state
cart_direction = "right" if cart_velocity > 0 else "left"
pole_direction = "right" if pole_angular_velocity > 0 else "left"
res = (f"The cart is positioned at {cart_position:.3f}, with a velocity of

{abs(cart_velocity):.2f} towards the {cart_direction}. "
f"The pole is tilted at {abs(pole_angle):.2f} radians, rotating at {

abs(pole_angular_velocity):.2f} radians per second towards the {
pole_direction}.")

return res

class GameDescriber:

22

Can language agents be alternatives to PPO?

def __init__(self):
pass

def describe_goal(self):
return "The goal is to keep the pole balanced upright for as long as

possible."

def describe_game(self):
return "In the CartPole game, you control a cart that moves along a

horizontal track. There is a pole " \
"standing upright on the cart. The goal of the game is to keep the

pole balanced upright by moving the " \
"cart left or right. The game ends if the pole tilts too far from the

vertical position or if the cart " \
"moves too far from the center of the track. The longer you can keep

the pole balanced, the higher your score." \
"Note that when the Cart Position is out of the (-2.4, 2.4)" zone or

the Pole Angle is out of the zone (-.2095, .2095)"\
", the round ends and the game is lost. "

def describe_action(self):
return "Your Next Move: \n Please choose an action. Type ’1’ to push the

cart to the left or ’2’ to push the cart to the right. Ensure you only
provide the action number from the valid action list, i.e., [1, 2]."

class TransitionTranslator(ObsTranslator):
def translate(self, infos, is_current=False):

descriptions = []
if is_current:

state_desc = ObsTranslator().translate(infos[-1][’state’])
return state_desc

for i, info in enumerate(infos):
assert ’state’ in info, "info should contain state information"

state_desc = ObsTranslator().translate(info[’state’])
action_desc = f"Take Action: Push {’right’ if info[’action’] == 2 else ’

left’} ({info[’action’]})."
reward_desc = f"Result: Reward of {info[’reward’]}, "
next_state_desc = ObsTranslator().translate(info[’next_state’])
descriptions.append(f"{state_desc}.\n {action_desc} \n {reward_desc} \n

Transit to {next_state_desc}")
return descriptions

A.2 Scenario Details

This section presents the details of each scenario. First, we propose the pseudocodes.

23

A.3 Details of Language Agents

Environment Task Challenge Difficulty
Acrobot-v1 Swing a robot arm Complex dynamic Moderate
Blackjack-v1 Play Blackjack Stochastic dynamic Easy to moderate
CartPole-v0 Balance a pole on a cart Inherent instability Easy to moderate
CliffWalking-v0 Navigate in a grid world Partial-Observe Easy
FrozenLake Navigate in a slippery world Partial-Observe and stochastic dynamic Hard
LunarLander-v2 Land a lunar module Complex states and dynamic Hard
MountainCarContinuous-v0 Drive a car up a hill exploration Moderate
MountainCar-v0 Drive a car up a hill Sparse reward Moderate
Taxi-v3 Pick up and drop off passengers Complex states, partial observe and stochastic environment Hard

Table 2: Summary of OpenAI Gym environments.

Algorithm 2 Pseudocode for Lv1:Zero Guidance and Lv5:Expert Guidance

Initialize agent M , knowledge memory Mk = ∅ for Level 1 while Mk = {expert−prompts}.
Update agent M .update(Mk) ▷ Update agents with the knowledge
Collect a trajectory τ with M in the environment. ▷ Rollout

Algorithm 3 Pseudocode for Lv2:Suboptimal Guidance and Lv4:Optimal Guidance

Initialize agent M , knowledge memory Mk = ∅, experiences τ1, . . . , τN . ▷ τ is
sub-optimal (optimal) trajectory
for episode = 1 to N do

Append τ to Mk. ▷ Update the knowledge
Update agent M .update(Mk) ▷ Update agents with the knowledge

end for
Collect a trajectory τ with M in the environment. ▷ Rollout

A.3 Details of Language Agents

We set the temperature as 0 to reduce the uncertainty raised by the LLM. It should be
noted that GPT-3.5/4 has unavoidable stochastic even set the temperature as 0. For EXE, its
pseudocode in Lv3 scenario is shown in Algorithm 4. For Reflexion, its algorithm is shown
below and the critic uses the cumulative reward as the evaluation results.

Algorithm 5 Pseudocode for Reflexion in Lv3.
Initialize agent M (which consists of actor Ma, critic Mc, learner Ml) and knowledge
memory Mk = {game_document}.
for episode = 1 to N do

Update actor Ma.update(Mk) ▷ Update agents with the knowledge
Collect a trajectory τ with Ma in the environment. ▷ Rollout
evaluation←Mc(τ) ▷ Evaluation
suggestion←Ml(Mk, τ, evaluation) ▷ Learning with experience
Append (suggestion) to Mk. ▷ Update Knowledge

end for

For other agents that have no critic or learner, they follow the implementation of Reflexion
but with a different learner prompt:

Listing 2: Prompt of the Defual Learner

24

Can language agents be alternatives to PPO?

Algorithm 4 Pseudo-code for Explore-Exploit Guided Language Agent (EXE) in Lv3.

Initialize agent M (which consists of actor Ma, critic Mc, learner Ml) and knowledge
memory Mk = {game_document}.
for episode = 1 to N do

if Mk = {game_document} then
suggestion←Ml(Mk) ▷ Learning without experience
Update actor Ma.update(suggestion) ▷ Update agents with the knowledge
Collect a trajectory τ with Ma in the environment. ▷ Rollout

else
suggestion, insight←Ml(Mk) ▷ Learning with experience
Update actor Ma.update(suggestion, insight) ▷ Update agents with the

knowledge and insight
Collect a trajectory τ with Ma in the environment. ▷ Rollout

end if
evaluation←Mc(τ, suggestion) ▷ Evaluation
Append (τ, evaluation) to Mk. ▷ Update Knowledge

end for

You will be given the history of a past experience in which you were placed in
an environment and given a task to complete. Summarize your trajectory and
reasoning relation between your policy and the obtained result. Here are
two examples:

{FEW_SHOT_EXAMPLES}
{game description}, {goal description}
{traj}
Memory from past attempts:

Trial 1: [..]
Trial 2: [..]

Summary:

A.4 Details of PPO agent

This section primarily elaborates on the implementation of PPO within OpenAI Gym. In our
experiment, we try Tianshou (Weng et al., 2022) in almost every environment and Taxi-v3
environment with stable-baselines3 (Raffin et al., 2021), and we employed a custom neural
network architecture, The PPO architecture consists of the following components:

Policy Network: A sequential neural network with a linear layer (input features: obser-
vation space (obs_space), output features: 64, bias: enabled), followed by a hyperbolic
tangent activation function, another linear layer (input features: 64, output features: 64,
bias: enabled), and another hyperbolic tangent activation function.

Value Network: A sequential neural network with a linear layer (input features: 2, output
features: 64, bias: enabled), followed by a hyperbolic tangent activation function, another

25

A.5 Evaluation Details

linear layer (input features: 64, output features: 64, bias: enabled), and another hyperbolic
tangent activation function.

Action Output Network: A linear layer with input features equal to 64, output features
equal to the number of actions (action_num), and bias enabled (bias=True).

Value Output Network : A linear layer with input features equal to 64, output features
equal to 1, and bias enabled (bias=True).

Regarding the model size, the total number of trainable parameters in our policy model
is 8, 964 when the action number is 3, and the input dim is 1. This number was calculated by
summing the number of elements in each parameter tensor that requires gradient computation.

All our environments maintain consistency in the total number of training iterations,
with 400 epochs and 50 trajectories sampled per epoch. We conducted a grid search for the
learning rate, including {1e− 3, 1e− 4, 1e− 5}, discount factor, including {0.99, 0.95, 0.9},
weight for entropy loss, including {0.01, 0.05, 0.1}, and the number of repeat times for policy
learning, including {10, 20}.

A.5 Evaluation Details

For Blackjack-v1 which possesses strong uncertainty, we evaluate all agents for 100 episodes
at Level 3 and 20 episodes at the other levels. We utilize the consistency between the agent’s
actions (encompassing "hit" and "stick") in each episode and the optimal actions (Sutton
and Barto, 2018) as the reward mechanism. Specifically, when the two actions align, a reward
of 1 is assigned; conversely, when they are inconsistent, a reward of 0 is given. Subsequently,
the cumulative reward across 20 episodes is employed as the agent’s overall reward within
the blackjack environment. Under the conditions of Lv3, we divide the 100 episodes into 5
groups, with each group’s cumulative reward functioning as an individual episode’s reward
for Lv3, which is analogous to other environments. For other environments, we take 5 seeds
to evaluate each agent in a scenario of the environment. For Lv2 and Lv4 scenarios, each
agent is guided by the same 5 trajectories. For the Lv3 scenario, each agent interacts with
the environment with 5 episodes.

As for the solvability threshold, each environment has its own goal and we set the minimal
cumulative reward to obtain the final goal as the threshold. For the SOTA threshold, we
take the best RL performance as the SOTA. They are reported as Table 3.

Table 3: Solvability and SOTA thresholds for different environments.

Metric Blackjack-v1 CartPole-v0 CliffWalking-v0 MountainCar-Continuous-v0
Solvable Threshold 10 40 -200 0

SOTA 20 200 -13 94.53
Metric MountainCar-v0 Acrobot-v1 Taxi-v3 LunarLander-v2

Solvable Threshold -200 -200 0 120
SOTA -87 -72 7.52 261

26

Can language agents be alternatives to PPO?

Appendix B. Extensive Results

B.1 Absolute Performance Comparisons

See Figure 8 and Table 11.

l1

l2

l3

l4

l5

200180160140120100

EXE(Ours)
CoT
Naive-Actor
Reflexion
Self-Ask
Self-Consistency
SPP
PPO

(a) Acrobot-v1.

l1

l2

l3

l4

l5

5
10

15

EXE(Ours)
CoT
Naive-Actor
Reflexion
Self-Ask
Self-Consistency
SPP
PPO

(b) BlackJack-v1.

l1

l2

l3

l4

l5

50
100

150
200

EXE(Ours)
CoT
Naive-Actor
Reflexion
Self-Ask
Self-Consistency
SPP
PPO

(c) CartPole-v0.

l1

l2

l3

l4

l5

5004003002001000

EXE(Ours)
CoT
Naive-Actor
Reflexion
Self-Ask
Self-Consistency
SPP
PPO

(d) CliffWalking=-v0.

l1

l2

l3

l4

l5

400
200

0
200

EXE(Ours)
CoT
Naive-Actor
Reflexion
Self-Ask
Self-Consistency
SPP
PPO

(e) LunarLander-v2.

l1

l2

l3

l4

l5

500
400

300
200

EXE(Ours)
CoT
Naive-Actor
Reflexion
Self-Ask
Self-Consistency
SPP
PPO

(f) Taxi-v3.

l1

l2

l3

l4

l5

200180160140120100

EXE(Ours)
CoT
Naive-Actor
Reflexion
Self-Ask
Self-Consistency
SPP
PPO

(g) MountainCar-v0.

l1

l2

l3

l4

l5

200
20 40 60 80

EXE(Ours)
CoT
Naive-Actor
Reflexion
Self-Ask
Self-Consistency
SPP
PPO

(h) MountainCarContinuous-v0.

Figure 8: Radar graphs for absolute value comparison, which shows language agents’ perfor-
mances in different scenarios. For better representation, we clip the worst performance to
−500.

27

B.2 EXE without the game description

B.1.1 Economic and Time costs

We statistic the time and economic costs for our experiments that contribute to Table 11
in Table 4, 5 and. The time cost is caused by the frequency limit and latency in access to
OpenAI API. The economic cost is caused by the service of OpenAI API. As a summary,
the experiments in Table 4 consume about 64 hours and 2614 dollars.

Table 4: The total costs on time and economic for each environment.

Game Time Spend(s) Economic Cost ($)
Acrobot-v1 49830 565

Blackjack-v1 179 49
CartPole-v0 8000 74

CliffWalking-v0 23616 258
LunarLander-v2 38309 415
MountainCar-v0 35979 371

MountainCarContinuous-v0 41571 390
Taxi-v3 36072 489
Total 233556 2611

Table 5: The total time spent on each decider.

Decider Time Spend(s)
CoT 18115

EXE (Ours) 12161
Naive-Actor 9291
Reflexion 12387

SPP 63095
Self-Ask 44640

Self-Consistency 64743
Total 224432

B.2 EXE without the game description

Here we show the performance comparison between EXE and EXE-w/o doc to verify that GPT-
3.5 has a priori knowledge of the gym environment, and the results are shown in Table 6. From
the table, it can be observed that in Acrobot-v1, CliffWalking-v0, LunarLander-v2, and
Taxi-v3, both methods fail to achieve satisfactory results. Comparatively, in MountainCar-
v0, CartPole-v0 and MountainCarContinuous-v0, due to the inability of EXE-w/o doc to

Table 6: Performance on different environments at Lv3 with 5 successive episodes using EXE
and EXE without game description (EXE-w/o doc). The results of the final episode are shown.
The first value in each cell is the maximum and the second is the median of different trials.

Game EXE EXE-w/o doc
Acrobot-v1 -200/-200 -200/-200

Blackjack-v1 17/16 19/15
CartPole-v0 92/66 41/35

CliffWalking-v0 -118/-127 -101/-794
LunarLander-v2 -656/-735 -571/-590
MountainCar-v0 -116/-200 -200/-200

MountainCarContinuous-v0 91/88 -1/-1
Taxi-v3 -200/-227 -578/-731

28

Can language agents be alternatives to PPO?

acquire pertinent knowledge about the game, its performance is markedly inferior to that of
EXE. However, in Blackjack-v1 setting, as GPT-3.5 possesses relevant prior knowledge, the
disparity between EXE and EXE-w/o doc is not pronounced. We shall proceed to analyze the
two environments of MountainCarContinuous-v0 and Blackjack-v1 individually.

It is important to note that in the EXE-w/o doc, we obscure or attenuate the environment’s
game description and goal description but retain the action description, allowing the knowledge
of the valid action space to be preserved.

B.2.1 Case Study: MountainCarContinuous-v0

This section analyzes the result of EXE and EXE-w/o doc in MountainCarContinuous-v0.
The prompts of the environment for EXE and EXE-w/o doc are shown below.

The prompts of the environment for EXE in MountainCarContinuous-v0
Now you are in the task. In the Mountain Car game, you control a car placed

stochastically at the bottom of a sinusoidal valley. The only possible actions
are the accelerations between -1 and 1 that can be applied to the car in

either direction. The goal of the game is to strategically accelerate the car
to reach the goal state on top of the right hill as quickly as possible. The
episode ends if either the car reaches the goal position on top of the right
hill or the length of the episode is 200. Your Next Move:

Please select a numerical value within the range of [-1,1], which represents the
directional force being applied to the car. The action will be limited to the
range of [-1,1], and then multiplied by a power of 0.0015. The goal is to

reach the flag placed on top of the right hill as quickly as possible.

The generated insights and suggestions of EXE in MountainCarContinuous-v0
The insights of the game are listed below: The key information that can be

exploited to improve the performance of the player includes knowledge of the
car’s position and velocity, trying different actions and observing their
effects on the car’s position and velocity, using learned effective actions to
move towards the flag as quickly as possible, and balancing exploration and

exploitation. The player should also aim to improve their policy behavior by
making more informed decisions and finding a better balance between
exploration and exploitation. Additionally, the player should aim to achieve a
higher final score in order to improve their overall performance.

The suggestions are listed below:1. The player needs to know the car’s position
and velocity to determine the best way to move the car towards the flag on top
of the right hill. They also need to know which actions are effective in

moving the car towards the flag.
2. The player should try different actions and observe how they affect the car’s

position and velocity. They can also try combining different actions to see if
they work better together.

3. Once the player has learned which actions are best, they should use them to
move the car towards the flag as quickly as possible. They can also try to
anticipate the car’s movements and adjust their actions accordingly.

4. The player should balance trying new actions to learn more about the game with
using the actions they have learned are effective to improve their performance.

29

B.2 EXE without the game description

They should also try to avoid taking actions that have not been effective in
the past.

The prompts of the environment for EXE-w/o doc in MountainCarContinuous-v0
Now you are in the task.
Your Next Move:
Please select a numerical value within the range of [-1,1], which represents the

directional force being applied to the car. The action will be limited to the
range of [-1,1], and then multiplied by a power of 0.0015.

Your goal is to maximize the cumulative rewards for the game.

The generated insights and suggestions of EXE-w/o doc in MountainCarContinuous-v0
The insights of the game are listed below: The key information that can be

exploited to improve the performance of the player includes understanding the
movement of the car and how force application affects it, avoiding obstacles
and reaching the end of the track to earn rewards, experimenting with
different values of force and paths, observing other players/experts,
adjusting force application and timing, balancing exploration and exploitation,
learning from mistakes, and maximizing rewards through exploration and

exploitation. The player should also try to take risks while avoiding
unnecessary risks that could lead to failure. The policy behavior should
involve trying different values of force, exploring different paths, and
adjusting force application and timing to avoid obstacles and reach the end of
the track faster. The player should also balance exploration and exploitation
to maximize rewards and learn from their mistakes to improve their

performance.
The suggestions are listed below:1. Understanding how the car moves and how force

affects its movement, as well as how to avoid obstacles and reach the end of
the track to earn rewards, is critical to determine the optimal policy.

2. The player should try different values of force and explore different paths to
see how the car responds and learn from their mistakes. They can also observe
how other players or experts play the game to gain insights.

3. The player can exploit the information obtained by adjusting their force
application and timing to avoid obstacles and reach the end of the track
faster. They can also try to earn more rewards by taking risks and exploring
new paths.

4. The player should balance exploration and exploitation by trying new strategies
while also sticking to what has worked in the past. They should not be afraid
to take risks, but also not take unnecessary risks that could lead to failure.

From the aforementioned case study, it can be observed that due to the inability of the
EXE-w/o doc to ascertain the game description and the goal description, it consequently fails
to generate accurate and effective insights and suggestions. This, in turn, results in the actor
being unable to make well-informed judgments.

30

Can language agents be alternatives to PPO?

B.2.2 Case Study: Blackjack-v1

This section analyzes the result of EXE and EXE-w/o doc in the environment Blackjack-v1.
The prompts of the environment for EXE and EXE-w/o doc are shown below.

The prompts of the environment for EXE in Blackjack-v1
Now you are in the task.
In the game of Blackjack, the main aim is to obtain a higher card sum than the

dealer, but not higher than 21. Face cards count as 10, numerical cards hold
their value, and aces can count either as 1 or 11. The game starts with the
dealer having one face-up and one face-down card, while the player has two
face-up cards. The player can either choose to ’hit’ (add a card) or ’stick’
(stop receiving cards). The game ends when the player or the dealer busts or
when both the player and dealer are finished drawing cards.

Your Next Move: \n Please choose an action. Type ’1’ to stick (stop receiving
cards) or ’2’ to hit (add a card). Ensure you only provide the action number
from the valid action list, i.e., [1, 2] in json format.

The goal is to beat the dealer by obtaining cards that sum to closer to 21,
without going over 21.

The current game state and the corresponding response of EXE in Blackjack-v1
Current Game State:
The player’s current sum is 14, the dealer is showing 10, and the player has a

usable ace: no.

The GPT response is: Based on the current game state, the player has a total card
value of 14, which is not very close to 21. The dealer is showing a 10, which
is a strong card. Since the player does not have a usable ace, they cannot use
it to improve their hand.

In this situation, the player should consider taking another card (action 2) to
try and improve their hand. However, they should be careful not to exceed 21
and bust.

Therefore, the optimal action for the player in this situation would be to take
another card (action 2).

Case Study: The prompts of the environment for EXE-w/o doc in Blackjack-v1
Now you are in the task.
Your Next Move: \n Please choose an action. Type ’1’ to stick (stop receiving

cards) or ’2’ to hit (add a card). Ensure you only provide the action number
from the valid action list, i.e., [1, 2] in json format.

Your goal is to maximize the cumulative rewards for the game.

Case Study: The current game state and the corresponding response of EXE-w/o doc in
Blackjack-v1
Based on the current game state, the player’s total sum is 14, and the dealer is

showing 10. The player has two options: hit or stick.

31

B.3 EXE in more environments

If the player chooses to hit, they will receive another card. The new card could
be any value from 1 to 10. If the new card is a 7 or higher, the player will
bust and lose the game. If the new card is a 6 or lower, the player will have
a chance to improve their hand.

If the player chooses to stick, they will stop receiving cards and wait for the
dealer to reveal their hand. The dealer will then draw cards until their total
sum is 17 or higher. If the dealer busts, the player wins. If the dealer’s

total sum is higher than the player’s, the player loses. If the dealer’s total
sum is equal to the player’s, the game is a tie.

Based on the current game state, the player’s best option is to hit. This is
because the player’s total sum is only 14, which is not a strong hand. By
hitting, the player has a chance to improve their hand and get closer to 21
without busting.

Therefore, the optimal action for the player to take is to choose action number 2,
which is to hit.

The output should be formatted as a JSON instance that conforms to the JSON schema
below:

{"action": 2}

From the aforementioned case studies of Blackjack-v1, it is evident that GPT-3.5
possesses prior knowledge pertinent to Blackjack-v1. Regardless of whether users provide a
game description or goal description, the EXE method is able to execute superior actions in
response.

B.3 EXE in more environments

We have accomplished the translation of the FrozenLake-v1 environment and conducted
experiments using EXE Lv3 on it, with each trial consisting of five successive episodes. The
performance is illustrated in the following table 7. Evidently, EXE Lv3 is unable to resolve
the FrozenLake-v1 environment well.

Table 7: The performance of EXE with 5 successive episodes using GPT-3.5 at Level 3 in the
FrozenLake-v1 environment. The first value in each cell is the median of different seeds and
the value inside the parentheses represents the interquartile range while the last value is the
maximum value.

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5
EXE 0(0)/0 0(0)/0 0(0)/0 0(0)/0 0(0)/0

We attribute the failure to the inherent randomness of the FrozenLake-v1 environment,
where the agent has a certain probability of moving in the wrong direction and falling into
a hole, thereby ending the round of the game. Consequently, EXE’s exploration fails to

32

Can language agents be alternatives to PPO?

acquire any information about the target point, making it unable to provide advantageous
suggestions for the agent’s actions.

B.4 Missing Case Studies

In this section, we will present the performance differences of representative language agents in
various environments, stemming from domain knowledge controlling or different architectural
designs. We will delve into a detailed analysis through typical cases.

B.4.1 Blackjack-v1

In this section, we analyze the performances of language agents in Blackjack-v1. From
Table 11, agents in Lv1 achieve great performance and their performances can hard to be
improved by injecting knowledge (Lv2 to Lv5). The main reason behind this is that GPT-3.5
may have enough knowledge on accomplishing this task and inappropriate knowledge may
mislead it.

Lv1 versus Lv5: For CoT and Naive Actor, their maximal performances downgrade more
than 5. Take CoT as an example:

Case Study: The expert few-shot examples in Lv5 for CoT in blackjack-v1
Question:
State description: Current Game State: The player’s current sum is 12, the dealer

is showing 6, and the player has a usable ace: no.
Goal description: The goal is to beat the dealer by obtaining cards that sum to

closer to 21, without going over 21.
Action description: Your Next Move: Please choose an action. Type ’1’ to stick (

stop receiving cards) or ’2’ to hit (add a card). Ensure you only provide the
action number from the valid action list, i.e., [1, 2].

Answer:
In the specific case where the player’s hand is 12 and the dealer’s visible card

is 6, according to the game rules, the dealer must have at least 17 points in
their hand to stop taking another card. If the dealer’s card value is
relatively small, the probability of the dealer taking another card is
relatively high. If the player takes another card in this situation, there is
a risk of exceeding 21 points, so the optimal strategy is to stick (stop
receiving cards).

So the final answer is: stick (stop receiving cards) (Action 1).

Example 2:
Question:
State description: Current Game State: The player’s current sum is 17, the dealer

is showing 10, and the player has a usable ace: no.
Goal description: The goal is to beat the dealer by obtaining cards that sum

closer to 21, without going over 21.
Action description: Your Next Move: Please choose an action. Type ’1’ to stick (

stop receiving cards) or ’2’ to hit (add a card). Ensure you only provide the
action number from the valid action list, i.e., [1, 2].

33

B.4 Missing Case Studies

Answer:
The player’s current sum of cards is 17, while the dealer is showing a 10, and the

player does not have a usable ace. The objective is to have a card sum closer
to 21, without exceeding that value, to beat the dealer. Since the player’s

sum is 17 and there is a risk of going over 21 if the player hits, it might be
wiser to stick with the current hand and not take an additional card to avoid
the risk of busting.

So the final answer is: stick (stop receiving cards) (Action 1).

These examples are correct but CoT gets misled as follows:

Case Study: The decision of CoT in Lv5 for blackjack-v1
Prompt: {expert few-shot examples}
The player’s current sum is 14, the dealer is showing 1, and the player has a

usable ace: no.
Please select an action based on the current game state and the information you

get. You must select the appropriate action from the given action descriptions
and cannot refrain from taking action or performing any prohibited actions.

Here is the action description below:
Your Next Move: \n Please choose an action. Type ’1’ to stick (stop receiving

cards) or ’2’ to hit (add a card). Ensure you only provide the action number
from the valid action list, i.e., [1, 2].

...

Response: Chain-of-Thought Method:

1. The player’s current sum is 14, and the dealer is showing 1.
2. According to the rules of Blackjack, the dealer must take another card if their

visible card is less than 17.
3. If the dealer takes another card, there is a high probability that they will

exceed 21 and bust.
4. If the player takes another card, there is a risk of exceeding 21 points, so

the optimal strategy is to stick (stop receiving cards).
5. Therefore, the optimal action for the player is to stick (stop receiving cards).

Output:
‘‘‘
{"action": 1}

The optimal action should be to hit (Action 2), not to stick (Action 1). The provided
response is conservative and does not favor hitting in this scenario to potentially improve
the hand. Compared to conservative reasoning, CoT in Lv1, which has no expert guidance
can correctly make decisions in such a scenario:

Case Study: The decision of CoT in Lv1 for blackjack-v1
The player’s current sum is 14, the dealer is showing 1, and the player has a

usable ace: no.

Chain of Thought:

34

Can language agents be alternatives to PPO?

- The dealer is showing a 1, which means there is a high probability that the
dealer’s next card will be a 10, resulting in a total of 21.

- The player’s current sum is 14, which is a low number and far from 21.
- The player does not have a usable ace, which means the player cannot use it to

improve their hand.
- Therefore, the best course of action is to hit (add a card) in hopes of getting

closer to 21 without going over.

Action: 2

This shows the challenge of expert guidance: correct examples may lead to unexpected
performance downgrades.

B.4.2 Cartpole-v0

In the Cartpole-v0 environment, the EXE algorithm outstrips competing methods in the Lv1
scenario with respect to median performance metrics, as evidenced in Figure 9. The primary
distinction of EXE lies in its unique paradigm of learning without prior experience. This
approach presents initial heuristic suggestions to the agent, which are devoid of extensive
historical data. Such preliminary guidance, although rudimentary, does not necessitate a
foundational dataset. Therefore, the observed enhancement in performance with EXE under
the Lv1 scenario could be primarily driven by the generative reasoning step it induces for
the agent.

Case Study: The suggestion in prompt of EXE in Lv1 for Cartpole-v0
The suggestions are listed below: 1. The player needs to understand that the goal

of the game is to keep the pole balanced upright by moving the cart left or
right. They should also know that the game ends if the pole tilts too far from
the vertical position or if the cart moves too far from the center of the

track. It’s important to pay attention to the position of the cart and the
angle of the pole to make the right decisions.

2. The player should try different actions and observe the results to see what
works best. They can also try to keep track of their score and see how it
changes with different actions.

3. Once the player has gathered enough information, they can use it to make better
decisions in subsequent episodes. For example, if they notice that moving the
cart to the left tends to keep the pole balanced for longer, they can try to

do that more often.

4. Balancing exploration and exploitation is important to improve performance. The
player should try different actions to explore the environment and gather

information but also use the information they have already obtained to exploit
what they know works well. It’s important to find a balance between trying

new things and sticking with what has worked in the past.

35

B.4 Missing Case Studies

Figure 9: The performance of different deciders in CartPole-v0 game at level 1

B.4.3 CliffWalking-v0

A comparison of the performance between EXE and Reflexion at Lv3 We conducted
5 consecutive experiments in the CliffWalking-v0 environment for EXE and Reflexion in
the Lv3 scenario, and the performance is shown in Figure 5. The pink dashed line represents
the solvable threshold (−200), the blue solid line denotes the maximum value line, the orange
solid line signifies the median line and the green solid line corresponds to the mean line. As
can be observed, with the increase of episodes, both the median and mean of the EXE show
growth. In contrast, the performance of Reflexion does not exhibit any improvement as the
episodes progress.

Table 8: The number of goal-visiting of EXE and Reflexion at Lv3 with 5 successive episodes
using GPT-3.5. The first value in each cell is the number of goal visits and the second is the
number of trials.

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5
EXE 5/5 4/5 3/5 5/5 5/5

Reflexinon 0/5 0/5 0/5 0/5 0/5

Additionally, we have also compiled the number of goal-visiting of EXE and Reflexion
at Lv3 with 5 successive episodes. From Table 8, it can be discerned that under the GPT-
3.5, EXE excels at exploration, thus effectively locating the target points, while Reflexion’s
exploration efficiency is considerably less impressive. The case studies of EXE and Reflexion
are shown below.

36

Can language agents be alternatives to PPO?

Case Study: The previous suggestion, summary, insight and current suggestion generated by
GPT-3.5 using EXE at Lv3
The suggestion response is: 1. Critical knowledge for determining the optimal

policy includes the layout of the grid world, the location of cliffs and the
goal, safe actions and actions leading to cliffs or boundaries, and the
penalties associated with each action.

2. The player should try different actions and observe the rewards received to
explore the grid world. They can also try new actions to acquire information
while choosing actions that have been successful in the past to achieve higher
performance.

3. The player can exploit the information obtained by choosing actions that have
been successful in the past and avoiding actions that lead to cliffs or
boundaries. They can also use the optimal policy to navigate towards the goal
while avoiding cliffs.

4. The player should balance exploration and exploitation by trying new actions to
acquire information while also choosing actions that have been successful in

the past to achieve higher performance. They should also use the optimal
policy to navigate towards the goal while avoiding cliffs.

The summary is: 1. {
"grid_size": "4x12",
"cliff_locations": [

{"x": 3, "y": 2},
{"x": 3, "y": 1},
{"x": 2, "y": 1},
{"x": 1, "y": 3},
{"x": 1, "y": 4},
{"x": 2, "y": 4}

],
"goal_location": {"x": 0, "y": 11},
"safe_actions": [1, 2, 3, 4],
"penalties": {

"cliff": -100,
"boundary": -1,
"safe": -1

}
}
2. The policy behavior is a combination of exploration and exploitation. The

player tries different actions to explore the grid world and acquire
information, while also choosing actions that have been successful in the past
to achieve higher performance. The player also uses the optimal policy to

navigate towards the goal while avoiding cliffs. However, the player’s
performance is poor, as they do not reach the goal within 200 steps and
receive a performance score of -3863.

The insight response is: 1. Layout of the grid world, including the location of
cliffs and the goal.

2. Safe actions and actions leading to cliffs or boundaries.
3. Optimal policy for navigating towards the goal while avoiding cliffs.

37

B.4 Missing Case Studies

4. Balancing exploration and exploitation to acquire information and achieve
higher performance.

5. Penalties for cliffs, boundaries, and safe actions.
6. Total reward received and performance score.
To improve performance, the player should focus on learning the optimal policy and

safe actions, while avoiding cliffs and boundaries. They should also balance
exploration and exploitation to acquire information and achieve higher
performance. Additionally, they should aim to receive a higher total reward
and performance score.

The suggestion response is: 1. Critical knowledge for determining the optimal
policy includes the layout of the grid world, the location of cliffs and the
goal, safe actions and actions leading to cliffs or boundaries, and the
penalties associated with each action.

2. The player should try different actions to explore the grid world and observe
the rewards received. They can also use trial and error to find safe paths to
the goal while avoiding cliffs.

3. The player can exploit the information obtained by choosing actions that have
been successful in the past and using the optimal policy to navigate towards
the goal while avoiding cliffs.

4. The player should balance exploration and exploitation by trying new actions to
acquire information while also choosing actions that have been successful in

the past to achieve higher performance. They should also use the optimal
policy to navigate towards the goal while avoiding cliffs.

Case Study: The plan generated by GPT-3.5 using Reflexion at Lv3
In this environment, my plan was to move right to avoid the cliff. However, I was

stuck in a loop in which I continually tried to move down instead of moving
right. In the next trial, I will move right if I am stuck in a loop again.

It is evident that compared to Reflexion, EXE extracts a greater amount of information,
offering more detailed guidance.

GPT-4 VS GPT-3.5 Although EXE is capable of extracting some useful information, the
limitations in the performance of GPT-3.5 cause it to be prone to hallucinations and result
in incomplete information extraction. Consequently, the insights and suggestions provided
by EXE may be somewhat misleading, leading to a certain degree of deviation in the agent’s
action selection and hindering it from reaching optimal performance. Therefore, we employ
GPT-4 to evaluate its performance in the CliffWalking-v0 environment.

We executed 5 iterations each for EXE and Reflexion within the GPT-3.5, allocating 200
steps per iteration. In contrast, under the GPT-4 environment, merely 2 iterations were
conducted, as the decision-making component effectively resolved the problem within the
second iteration. Additionally, we capped the STEP parameter at 50 steps, owing to the
elevated computational cost associated with GPT-4. The performance and the cost per step
are shown in Table 9. As we can see, using GPT-4 can greatly improve the performance of
EXE and Reflexion.

We compiled the occurrences of EXE and Reflexion visiting the goal position during
the first round of exploration under different versions of GPT. As can be seen, regardless

38

Can language agents be alternatives to PPO?

of whether it is GPT-3.5 or GPT-4, EXE can locate the goal position during the initial
exploration. In contrast, Reflexion does not perform as effectively when navigating to the
goal position under the GPT-3.5 version. It is only with the GPT-4 version that Reflexion
exhibits a 50% probability of discovering the goal position (see the second row of Table 9).

Table 9: The performance of EXE and Reflexion in the CliffWalking-v0 environment when
using GPT-4 and GPT-3.5-turbo at Lv3. In each cell of the first row, the first value represents
the maximum, while the second value signifies the median. Within every cell of the second
row, the first value indicates the number of times the agent could explore the goal position
(3, 11) during the initial episode, while the second value refers to the number of repeated
experiments. And the third row represents the cost incurred at each step.

EXE-GPT3.5 Reflexion-GPT3.5 EXE-GPT4 Reflexion-GPT4
Performance -118/-127 -19505/-19901 -13/-13 -13/-50

Goal found times 5/5 0/5 5/5 3/5
Cost(Per Step) 0.003 0.008 0.06 0.05

Case Study: The previous suggestion, summary, insight and current suggestion generated by
GPT-4 using EXE at Lv3
The suggestion response is: 1. Important knowledge:

- Starting position
- Goal position
- Cliff locations
- Safe paths

2. Exploration in the next episode:
- Start by moving carefully, one step at a time
- Try different directions to find safe paths
- Remember cliff locations to avoid them in the future

3. Exploit information:
- Use the safe paths found in the previous episode
- Avoid cliffs and dangerous areas
- Move towards the goal using the shortest path

4. Balance exploration and exploitation:
- Begin by exploring new paths to find the shortest route
- Once a safe path is found, exploit it to reach the goal quickly
- If stuck, explore a new direction but remember to avoid cliffs.

The summary response is: 1. {"Starting position": "(3, 0)", "Goal position": "(3,
11)", "Cliff locations": ["(3, 1)"], "Safe paths": ["(2, 0)", "(2, 1)", "(2, 2)
", "(2, 3)", "(2, 4)", "(2, 5)", "(2, 6)", "(2, 7)", "(2, 8)", "(2, 9)", "(2,
10)", "(2, 11)", "(1, 11)", "(0, 11)", "(0, 10)", "(0, 9)", "(0, 8)", "(0, 7)",
"(0, 6)", "(0, 5)", "(0, 4)", "(0, 3)", "(0, 2)", "(0, 1)", "(1, 1)", "(1, 2)

", "(1, 3)", "(1, 4)", "(1, 5)", "(1, 6)", "(1, 7)", "(1, 8)", "(1, 9)", "(1,
10)"]}

2. The policy behavior involves exploring the grid world.

The insights of the game are listed below: To help the six-year-old player improve
their performance in the game, we can focus on the following key information:

39

B.4 Missing Case Studies

1. Starting position: The player starts at position (3, 0).
2. Goal position: The player needs to reach position (3, 11).
3. Cliff locations: There is a cliff at position (3, 1) that the player should

avoid.
4. Safe paths: There are multiple safe paths available for the player to reach the

goal, such as moving through positions (2, 0) to (2, 11) or (1, 1) to (1, 10).

5. Policy behavior: The player should explore the grid world to find the best path
to the goal.

By understanding these key points, the player can focus on navigating through the
safe paths and avoiding the cliff while exploring the grid world to reach the
goal position.

The suggestions are listed below:1. Important knowledge:
- Remember the starting position (3, 0) and the goal position (3, 11).
- Be aware of the cliff location (3, 1) and avoid it.
- Follow the safe paths provided.

2. Exploration in the next episode:
- Start by moving up (action 1) to avoid the cliff.
- Then, move right (action 2) and follow the safe path.
- Keep exploring the safe paths and avoid cliffs.

3. Exploit the information:
- Use the safe paths to reach the goal quickly.
- Remember the steps taken in the previous episode to avoid mistakes.

4. Balance exploration and exploitation:
- Focus on following the safe paths and avoid unnecessary exploration.
- Learn from previous mistakes and make better decisions in the next episode.

Through the above case study, we can observe that under the GPT-4 version, EXE is capable
of extracting more abundant and useful information without experiencing hallucinations.
Simultaneously, the insights and suggestions provided by EXE in the GPT-4 are more specific
and effective, allowing the agent to reach the goal position more rapidly.

Case Study: The plan generated by GPT-4 using Reflexion at Lv3
In the previous attempt, I made a mistake by stepping into the cliff at location

(3, 1) at the beginning, which resulted in a large penalty of -100. To avoid
this mistake, I should move up first instead of moving right. My new plan is
as follows:

1. Start at location (3, 0).
2. Move up to location (2, 0).
3. Move right along row 2, avoiding the cliffs, until reaching location (2, 11).
4. Move down to location (3, 11), which is the goal location.

By following this plan, I should be able to reach the goal location with a better
performance score.

Similarly, we can see that under GPT-3.5, Reflexion does not generate useful plans,
whereas, under GPT-4, Reflexion generates detailed and correct plans that tell the actor the

40

Can language agents be alternatives to PPO?

optimal moves for each step, thus allowing the actor to reach the goal point faster and gain
points.

Nevertheless, during the examination of the GPT-4 version’s reflexion, we discerned
that the plan generated by the Reflexion is not entirely accurate, thus precluding the actor
from obtaining substantial rewards while implementing the plan. We attribute this to an
inadequate level of exploration in the early stages of the Reflexion, thereby hindering the
discovery of valuable information. The incorrect plan generated by GPT-4 using Reflexion is
shown below.

Case Study: The incorrect plan generated by GPT-4 using Reflexion at Lv3
In the previous attempt, I moved along the top row of the grid world, then

backtracked and moved along the second row. This approach was inefficient and
did not lead to the goal. In the next trial, I will try a more direct path to
the goal by moving right and up, avoiding cliffs, and adjusting my path as
needed.

Plan:
1. Start at location (3, 0).
2. Move right until reaching the last column (column 11).
3. Move up until reaching the top row (row 0).
4. If the goal is not found, adjust the path by moving left or down to explore

other areas of the grid world while avoiding cliffs.
5. Continue adjusting the path until the goal is reached or the maximum number of

steps (50) is reached.

Ablation Experiment of EXE We employed GPT-4 to conduct ablation experiments
for EXE in the CliffWalking-v0 environment. We proposed three variants of EXE, namely
EXE-WOSUG, EXE-WOI, and EXE-WOSH. Among them, EXE-WOSUG represents EXE
without the application of suggestions, EXE-WOI signifies EXE without the incorporation of
insights, and EXE-WOSH denotes EXE without the implementation of short-term memory.

Table 10: The performance of EXE and its variations in the CliffWalking-v0 environment
when using GPT-4 at Lv3. In each cell of the first row, the first value represents the maximum,
while the second value signifies the median. Within every cell of the second row, the first
value indicates the number of times the agent could explore the goal position (3, 11) during
the initial episode, while the second value refers to the number of repeated experiments.

EXE EXE-WOSUG EXE-WOI EXE-WOSH
Performance -13/-13 -15/-50 -13/-13 -50/-347

Goal found times 5/5 1/5 5/5 0/5

As can be observed from Table 10, the performance of EXE without utilizing insights is
not significantly different from that of the standard EXE. However, deactivating suggestions
in EXE results in reduced exploration efficiency (as evidenced by the Goal found times)
which inhibits the agent from synthesizing useful information, thereby hindering its ability to
take appropriate actions in the second round. The largest performance disparity is observed
in the EXE variant lacking short-term memory. This is due to its inability to access prior

41

B.4 Missing Case Studies

state, action, and reward information at each step, which prevents the agent from accurately
identifying instances of entering cliffs or stagnating at the same position. Consequently, it
fails to effectively circumvent cliff areas and explore valuable information.

Lv4 and Lv5 outperform other levels in CliffWalking-v0 From Table 11, with certain
deciders, agents can attain higher rewards under conditions Lv4 and Lv5 than other levels.
The primary reason is that both Lv4 and Lv5 contribute to knowledge leakage to a certain
degree. For example, in Lv4, the expert trajectories we provide allow the agent to deduce
valuable information such as the goal position. On the other hand, in Lv5, our action
responses within the human examples make mention of useful data like the goal position and
cliff position, thereby enabling the agent to capitalize on this information for decision-making
purposes. Here, We opt for 2 case studies featuring Lv4 from EXE and Lv5 from CoT.

Case Study: The insight and the suggestion generated by using EXE at Lv4
The insight response is: 1. The grid size is 4x12.
2. The start position is at [3,0] and the goal position is at [3,11].
3. There are no cliff positions in the grid.
4. The optimal policy behavior is to move right repeatedly until reaching the goal

position while avoiding cliffs and receiving small penalties for each action
taken.

5. The player’s current policy behavior is to repeatedly move right until reaching
the edge of the grid, then move down one row and repeat.

6. The player incurs a total penalty of -13.0 in all episodes.
7. In episode #3, the player’s policy behavior is slightly improved but still

suboptimal.
8. The maximum number of actions allowed is 200.

The suggestion response is: 1. The player needs to know the location of the cliffs
and the goal, as well as the penalties for each action. It is also important

to understand that moving towards the edge of the grid may not always be the
best strategy.

2. The player can explore the environment by trying different actions and
observing the resulting penalties. They can also try moving in different
directions to see if there are any hidden paths that lead to the goal.

3. Once the player has obtained information about the environment, they can use it
to make better decisions. For example, they can avoid the cliffs and take the
shortest path to the goal.

4. Exploration and exploitation should be balanced by trying new actions to gather
information while also using the information already obtained to make better

decisions. The player should also be willing to take risks and try new
strategies to improve their performance.

Case Study: The response of CoT in CliffWalking-v0 at Lv5
State description:
Current Game State: The player is at location [2, 11] in the grid world.
Goal description: The goal is to navigate from the starting point to a target

located at (3,11), avoiding the cliff, in as few steps as possible.
Action description: Your Next Move:

42

Can language agents be alternatives to PPO?

Please choose an action. Type ’1’ to move up, ’2’ to move right, ’3’ to move down,
or ’4’ to move left. Ensure you only provide the action number from the valid
action list, i.e., [1, 2, 3, 4].

Observation:
The player is at location (2, 11) in the grid world.

Chain of Thought:
The player is at the rightmost column of the grid and the goal is also at the

rightmost column. Therefore, the optimal action should be to move down, i.e.,
action 3.

Action:
{"action": 3}.

From the suggestions and insights generated by EXE in Lv4, as well as the responses
from CoT in Lv5, it is evident that the agent can obtain global information pertaining to
CliffWalking-v0, which in turn facilitates superior action selection.

Figure 10: The performance of different deciders in CliffWalking-v0 environment at Lv5.
In the graph, the orange line represents the median value.

Self-Consistency Lv5 outperforms other deciders at Level 5 in the CliffWalking-v0
environment From Table 11, we can observe a fascinating phenomenon: under the condi-
tion of Lv5, both the median and maximum values of Self-Consistency surpass those of other
deciders. This demonstrates that, in the CliffWalking-v0 environment, Self-Consistency
can not only achieve superior performance but also maintain excellence across multiple

43

B.4 Missing Case Studies

runs. The performance of different deciders at Lv5 in the CliffWalking-v0 environment is
depicted in Figure 10.

We attribute its outstanding performance to two aspects: on the one hand, Self-
Consistency inherits the way of thinking from CoT and the expert information of CoT
at Lv5; on the other hand, Self-Consistency employs a method that selects the action with
the highest frequency after multiple queries, thus reducing action outliers and making the
choice of actions more deliberate and well-considered. Here comes the case study with five
responses to one query with Self-Consistency.

Case Study: The responses generated by using Self-Consistency at Lv5 in the CliffWalking-
v0 environment
Current Game State: The player is at location [3, 0] in the grid world.

Response 1:
Logic:
The player is currently at location (3, 0) in the grid world. Moving right is not

a valid action as there is a cliff at (3, 1...10). Moving down is the optimal
action as the target is located at (3, 11), and there are no cliffs in the
player’s neighborhood.

Output:
{"action": 3}

Response 2:
Thought process:
Since we are trying to reach the goal in as few steps as possible, we need to

choose the action that moves us closer to the goal. The goal is at position (3,
11) which is to the player’s right side. Therefore, we should choose action 2,
i.e., move right.

Output:
{"action": 2}

Response 3:
Logic:
Since the player is at the leftmost column and there is a wall to their left, the

optimal action would be to move up (action 1). This will keep the player away
from the cliff and still allow them to make progress towards the target.

Output:
{"action": 1}

Response 4:
Logic:
Since the player is at the leftmost position, the only valid actions are moving up

or down. Moving up will take the player closer to the target, while moving
down will take the player away from the target. Therefore, the optimal action
is to move up, i.e., action 1.

Output:
{"action": 1}

Response 5:

44

Can language agents be alternatives to PPO?

Thought process: Since the target is at (3,11), it is clear that the player needs
to move towards the right side of the grid. However, moving right from the
current position (3,0) will lead the player to fall off the cliff, which will
incur a large penalty of -100. Therefore, the player needs to move up towards
row 2 to avoid the cliff.

Answer:
{"action": 1}.

The action list is: [3, 2, 1, 1, 1]
The optimal action is: 1.

From the aforementioned response on self-consistency, it is evident that precisely due
to the employment of multiple samples to select the action with the highest occurrence
frequency, the agent is capacitated to execute the accurate course of action when presented
with a given state.

B.4.4 MountainCarContinuous-v0

In this section, we analyze the performances of different language agents in MountainCarContinuous-
v0. We conducted 5 consecutive experiments in the MountainCarContinuous-v0 environment
using EXE and Reflexion at Lv3, and the resulting performance box plot is shown in Figure 6.
It is evident that with the increase in episodes, both the median and mean of the EXE method
are growing, while the maximum value remains at a relatively high figure. In contrast, the
performance of Reflexion does not exhibit any improvement as the episodes progress. The
generated suggestions from EXE are presented below.

Case Study: The suggestion generated by GPT-3.5 using EXE in MountainCarContinuous-v0
environment at Lv3
The suggestion response is: 1. The player needs to understand how the car’s

position and velocity change when they apply different amounts of force. They
should also try to figure out which direction to accelerate in to move the car
towards the goal faster.

2. The player should try different amounts of force in different directions to see
how the car responds. They can also try accelerating in the same direction

multiple times to see if it leads to faster movement.
3. Once the player has gathered information about how the car responds to

different forces, they can use that information to make more informed
decisions about which actions to take. For example, if they know that
accelerating in a certain direction leads to faster movement, they can exploit
that knowledge by continuing to accelerate in that direction.

4. The player should balance exploration and exploitation by trying new actions to
gather information while also using the information they have already

gathered to make more informed decisions. They should try to find a balance
between trying new things and using what they already know to improve their
performance.

The generated memory from Reflexion is presented below.

Case Study: The memory generated by GPT-3.5 using Reflexion in MountainCarContinuous-
v0 environment at Lv3

45

B.4 Missing Case Studies

Trial #0: I will try to accelerate the car to the right hill as quickly as
possible. I will try to accelerate the car to the right hill as quickly as
possible.

Trial #1: I will try to accelerate the car to the right hill as quickly as
possible.

Trial #2: I have been trying to accelerate the car to the right hill as quickly as
possible. However, I have not been able to reach the goal state. I should

have tried to accelerate the car to the right hill as quickly as possible
while avoiding the left hill. I will try to accelerate the car to the right
hill as quickly as possible while avoiding the left hill in the next trial.

From the two case studies presented above, it is evident that EXE possesses the capacity
to generate considerably effective exploration strategies based on historical trajectories, such
as “They can also try accelerating in the same direction multiple times to see if it leads to
faster movement.” Conversely, Reflexion is unable to generate accurate and useful strategies
predicated on the historical trajectories found in lengthy texts, which ultimately results in
the actor’s inability to make optimal decisions drawing from historical information.

Simultaneously, we observed that the performance of EXE Lv4 is significantly inferior
to that of EXE Lv3 in the MountainCarContinuous-v0 environment. We analyzed the
suggestions provided by EXE Lv4 which are shown below. It can be noted that the
suggestions generated by EXE Lv4 are excessively broad and fail to effectively guide the
agent’s action selection. We attribute the aforementioned issues to the following factors:
On the one hand, due to the limited capabilities of GPT-3.5, it is unable to adequately
summarize valuable information and conclusions from expert trajectories or mimic expert
actions for making superior choices. On the other hand, during the generation of suggestions
in EXE Lv3, various effective strategies are explored, as demonstrated in the aforementioned
case study, which can offer more effective guidance for the agent’s action selection.

Case Study: The suggestion generated by GPT-3.5 using EXE in MountainCarContinuous-v0
environment at Lv4
The suggestions are listed below:1. The player needs to understand that the goal

of the game is to reach the flag on top of the right hill as quickly as
possible. They also need to know that the only actions they can take are to
accelerate the car in either direction between -1 and 1.

2. The player should try different acceleration values to see how they affect the
car’s movement. They can also observe how the car moves in response to
different actions.

3. Once the player has found a good acceleration strategy, they should stick to it
and try to optimize it. They can also try to anticipate the car’s movements

and adjust their actions accordingly.
4. The player should balance exploration and exploitation by trying new actions to

see if they improve performance but also sticking to what has worked well in
the past. They should also pay attention to the car’s movements and adjust
their actions accordingly.

46

Can language agents be alternatives to PPO?

B.4.5 MountainCar-v0

From Table 11, agents with Reflexion at Lv5 achieve greater performance than any other de-
ciders and levels. So in this section, we analyze the performances of Reflexion in MountainCar-
v0 at Lv5.

We surmise that the primary reason behind this is that at Lv5, we have provided Reflexion
with past cumulative experiences and human-generated actions along with their thought
processes. However, other deciders (such as CoT, SPP, and EXE) and levels have not furnished
corresponding information, which has led to Reflexion Lv5’s significantly superior performance
in the MountainCar-v0 environment when compared to other deciders and levels. The prompt
for Reflexion Lv5 is illustrated below.

Case Study: The human few-shot example of Reflexion in MountainCar-v0 environment at
Lv5
Question:
State description: Current Game State: The car is positioned at 0.472, with a

velocity of 0.049 towards the right.
Goal description: The goal is to reach the flag placed on top of the right hill as

quickly as possible.
Action description: Your Next Move:Please choose an action. Type ’1’ to accelerate

to the left, ’2’ to not accelerate, or ’3’ to accelerate to the right.Ensure
you only provide the action number from the valid action list, i.e., [1, 2, 3].

Your memory for the task below:
Trial 0:
In this environment, my plan was to accelerate the car to the right as quickly as

possible. However, the goal of the game is to reach the flag placed on top of
the right hill as quickly as possible. I should have accelerated the car to
the right until it had enough velocity to reach the top of the left hill, then
I should have accelerated the car to the left to reach the flag. In the next

trial, I will accelerate the car to the right until it has enough velocity to
reach the top of the left hill, then I will accelerate the car to the left to
reach the flag.

Trial 1:
I will accelerate the car to the right until it has enough velocity to reach the

top of the left hill, then I will accelerate the car to the left to reach the
flag.

Trial 2:
In this environment, my plan was to accelerate the car to the right until it had

enough velocity to reach the top of the left hill, then I should have
accelerated the car to the left to reach the flag. However, I did not take
into account the fact that the car may not have enough velocity to reach the
top of the left hill. I should have monitored the car’s velocity and adjusted
my strategy accordingly. In the next trial, I will accelerate the car to the
right until it has enough velocity to reach the top of the left hill, then I
will monitor the car’s velocity and adjust my strategy accordingly.

Answer:
Based on the current game state and memories of the task, the optimal action for

the player to take would be to accelerate to the right (action 3). Therefore,

47

B.4 Missing Case Studies

the optimal action to take now is to push the cart to accelerate to the right
(action 3).

Despite a few inaccuracies in the above few-shot example, Reflexion is still able to execute
a superior strategy.

Table 11: Performance on different environments, deciders, and domain knowledge controlling
levels. The first value in each cell is the median of different seeds and the value inside the
parentheses represents the interquartile range while the last value is the maximum value.

Environment Decider Name Lv1 Lv2 Lv3 Lv4 Lv5

Acrobot-v1

EXE (Ours) -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
CoT -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200

Naive-Actor -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Reflexion -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Self-Ask -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200

Self-Consistency -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
SPP -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
PPO -96(14)/-70

Blackjack-v1

EXE (Ours) 15(1)/17 16(1)/17 16(1)/17 16(1)/17 15(0)/16
CoT 14(2)/17 13(2)/16 14(1)/14 15(2)/16 11(0)/12

Naive-Actor 18(0)/18 16(2)/18 16(1)/17 13(6)/18 10(0)/11
Reflexion 13(0)/13 16(0)/16 16(1)/17 17(2)/17 11(0)/11
Self-Ask 16(1)/17 9(4)/16 15(1)/15 13(2)/14 19(0)/19

Self-Consistency 18(0)/19 15(4)/16 18(1)/18 15(2)/19 14(2)/15
SPP 13(1)/13 11(3)/16 13(1)/14 12(0)/19 14(1)/16
PPO 18(1)/20

CartPole-v0

EXE (Ours) 59(1)/131 62(28)/74 66(16)/92 52(39)/107 58(8)/67
CoT 45(15)/53 24(16)/69 34(20)/54 48(14)/63 34(27)/69

Naive-Actor 13(0)/13 9(0)/15 10(8)/18 10(0)/10 9(0)/9
Reflexion 12(3)/21 9(0)/11 12(5)/46 12(6)/15 9(0)/9
Self-Ask 28(1)/30 25(10)/40 35(6)/41 27(19)/65 69(18)/81

Self-Consistency 41(7)/56 52(8)/73 38(3)/48 70(23)/72 30(15)/55
SPP 53(14)/71 15(3)/22 17(17)/37 31(31)/76 51(26)/71
PPO 200(0)/200

CliffWalking-v0

EXE (Ours) -1982(738)/-563 -847(1363)/-354 -127(110)/-118 -2576(1889)/-26 -347/-2675(297)
CoT -249(37)/-217 -1685(990)/-200 -2159(990)/-394 -200(553)/-171 -551(1040)/-23

Naive-Actor -398(0)/-299 -299(1089)/-200 -398(198)/-200 -20000(0)/-18515 -200/-200(0)
Reflexion -893(297)/-497 -5843(17325)/-695 -19901(396)/-19505 -200(0)/-200 -794(0)/-596
Self-Ask -299(0)/-186 -497(87)/-299 -314(115)/-200 -398(99)/-299 -337(548)/-126

Self-Consistency -497(102)/-200 -425(99)/-299 -299(322)/-200 -1808(145)/-28 -134(110)/-15
SPP -354(132)/-124 -243(431)/-133 -992(982)/-133 -1883(693)/-319 -344(154)/-51
PPO -13/-13(0)

LunarLander-v2

EXE (Ours) -931(279)/-696 -926(93)/-743 -735(113)/-656 -825(72)/-755 -713(143)/-685
CoT -891(306)/-867 -1003(0)/-1003 -555(571)/-132 -1033(0)/-1033 -718(23)/-714

Naive-Actor -804(0)/-804 -1033(0)/-1033 -1033(0)/-1033 -1033(0)/-1033 -1033(0)/-1033
Reflexion -701(35)/-650 -279(92)/-174 -1033(0)/-978 -248(40)/-107 -1033(0)/-1033
Self-Ask -452(59)/-274 -889(432)/-795 -1073(343)/-643 -1376(87)/-1287 -1457(6)/-1029

Self-Consistency -1463(137)/-1026 -1408(381)/-1007 -550(549)/-483 -1033(0)/-1033 -747(25)/-726
SPP -814(149)/-694 -769(36)/-737 -728(360)/-459 -488(46)/-267 -766(118)/-586
PPO 262/261(103)

MountainCar-v0

EXE (Ours) -200(0)/-120 -200(0)/-139 -200(76)/-116 -200(70)/-123 -200(0)/-135
CoT -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200

Naive-Actor -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Reflexion -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -162(1)/-161
Self-Ask -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200

Self-Consistency -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
SPP -200(0)/-200 -200(0)/-200 -200(0)/-194 -200(0)/-200 -200(0)/-200
PPO -90(1)/-87

MountainCarContinuous-v0

EXE (Ours) -13(1)/86 -10(6)/-4 88(99)/91 -8(1)/-6 -12(3)/88
CoT -15(1)/-14 -11(0)/-10 -6(5)/-2 -9(3)/-7 -20(0)/-20

Naive-Actor -5(0)/-5 -5(0)/-5 -17(13)/-5 -5(0)/-5 -2(0)/-2
Reflexion -5(0)/-4 -3(1)/-2 -7(11)/-4 -5(0)/-5 -20(0)/-20
Self-Ask -12(1)/-11 -12(1)/-11 -15(3)/-10 -12(4)/90 -10(1)/-9

Self-Consistency -14(1)/-14 -10(3)/-9 -13(1)/-12 -15(1)/-14 -20(0)/-20
SPP -11(1)/-10 -10(0)/-9 -12(6)/-6 -11(2)/-9 -12(0)/-10
PPO 0(0)/0

Taxi-v3

EXE (Ours) -821(0)/-605 -227(27)/-218 -227(630)/-200 -236(459)/-218 -740(216)/-605
CoT -245(18)/-227 -209(27)/-200 -353(261)/-218 -245(36)/-218 -200(0)/-200

Naive-Actor -1964(0)/-1964 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Reflexion -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Self-Ask -254(45)/-227 -272(54)/-263 -335(81)/-272 -308(45)/-236 -200(0)/-200

Self-Consistency -200(18)/-200 -200(0)/-200 -290(72)/-200 -200(9)/-200 -200(0)/-200
SPP -875(99)/-675 -371(9)/-353 -686(423)/-290 -650(36)/-614 -866(72)/-812
PPO -144(12)/-140

48

	Introduction
	Related Work
	Related Benchmarks
	Language Agents
	Problem Formulation
	Benchmark Design
	TextGym: A Friendly Gym for Language Agents
	Hierarchical Control of Domain Knowledge and Scenario Formulation
	RL-inspired Unified Algorithmic Framework for Language Agents

	Explore-Exploit Guided Language Agent (EXE)
	Experiments
	Investigating the potential of language agents.
	Examining the Impact of Scenario Variations
	Exploring Language Agents Choice
	Case Study between EXE and Reflexion

	Conclusion
	Appendix
	 Supplementary Material
	Experiments Details
	Environments Details
	Scenario Details
	Details of Language Agents
	Details of PPO agent
	Evaluation Details

	Extensive Results
	Absolute Performance Comparisons
	Economic and Time costs

	EXE without the game description
	Case Study: MountainCarContinuous-v0
	Case Study: Blackjack-v1

	EXE in more environments
	Missing Case Studies
	Blackjack-v1
	Cartpole-v0
	CliffWalking-v0
	MountainCarContinuous-v0
	MountainCar-v0

