
VMAgent: A Practical Virtual Machine Scheduling Platform

Junjie Sheng1 , Shengliang Cai1 , Haochuan Cui1 , Wenhao Li1 , Yun Hua1 , Bo Jin1 , Wenli
Zhou2 , Yiqiu Hu2 , Lei Zhu3 , Qian Peng3 , Hongyuan Zha4 , Xiangfeng Wang1∗

1School of Computer Science and Technology, East China Normal University, Shanghai, China.
2Algorithm Innovation Lab, Cloud BU, Huawei Technologies Co.

3Alkaid Lab, Cloud BU, Huawei Technologies Co.
4The Chinese University of Hong Kong (Shenzhen), Shenzhen, China

Abstract
Virtual machine (VM) scheduling is one of the
critical tasks in cloud computing. Many works
have attempted to incorporate machine learning, es-
pecially reinforcement learning, to empower VM
scheduling procedures. Although improved results
are shown in several demo simulators, the perfor-
mances in real-world scenarios are still underex-
ploited. In this paper, we design a practical virtual
machine scheduling platform, i.e., VMAgent, to as-
sist researchers to develop and evaluate their meth-
ods on the VM scheduling problem with realistic
properties. VMAgent consists of three components:
simulator, scheduler and visualizer. The simulator
abstracts three general realistic scheduling scenar-
ios (fading, recovering, and expansion) based on
Huawei Cloud real scheduling data, which is the
core of the entire platform. Flexible configurations
are further provided to make the simulator com-
patible with practical cloud computing architecture
(i.e., Multi Non-Uniform Memory Acess, NUMA)
and scenarios. Researchers then need to instan-
tiate the scheduler to interact with the simulator,
which is also pre-built in various types (e.g., heuris-
tic, machine learning, and operations research) of
scheduling algorithms to speed up the algorithm de-
sign. The visualizer, as an auxiliary component of
the simulator and scheduler, facilitates researchers
to conduct an in-depth analysis of the scheduling
procedure and comprehensively compare different
scheduling algorithms. We believe that VMAgent
would shed light on the AI for the VM schedul-
ing community and the demo video is presented in
https://bit.ly/vmagent-demo-video.

1 Introduction
The main challenge for leading cloud computing providers,
e.g., AWS, Azure, Alibaba Cloud, and Huawei Cloud,
is to fulfill customers’ dynamic resource requirements
(CPU/GPU, memory, etc.) seamlessly by real-time schedul-
ing the incoming requests to the physical machines (PMs)
of the particular cluster. This status quo makes designing

∗Corresponding author

Users

Request
Data Simulator

Cluster Configuration

Cluster

Scheduler 

Cluster Status Allocate

Visualizer 

Req
ue

sts

Figure 1: VMAgent platform overview. VMAgent consists of three
components: simulator, scheduler and visualizer. The simulator ab-
stracts three general realistic scheduling scenarios based on Huawei
Cloud realistic data. The scheduler interacts with the simulator and
the visualizer can take the interaction data to visualize the schedul-
ing procedure and the comparison of various algorithms.

efficient VM scheduling algorithms one of the critical tasks
in cloud computing. Many classical combinatorial optimiza-
tion methods were used to solve offline VM scheduling prob-
lem [Wolke et al., 2015]. However, practical scheduling sce-
narios mainly rely on heuristic methods [Bays, 1977; Hadary
et al., 2020] with low time complexity due to the urgent on-
line requirement. Unfortunately, these methods heavily de-
pend on expert knowledge and may get stuck in sub-optimals.

Recently, deep reinforcement learning (DRL) has shown
promising results on several combinatorial optimization prob-
lems [Nair et al., 2020]. [Bello et al., 2016; Nazari et al.,
2018; Deudon et al., 2018] adapt DRL to solve routing prob-
lems or travelling salesman problems (TSP); Duan et al.
[2019]; Hu et al. [2017] apply the DRL to solve the bin pack-
ing problem; And more relevantly, Sheng et al. [2022] firstly
propose a DRL algorithm for the VM scheduling, which
shows that DRL can obtain better performance than heuris-
tic methods in simple VM scheduling tasks. These all indi-
cate that DRL has great potential for solving VM scheduling
problems. However, different from the aforementioned prac-
tical combinatorial optimization problems, the lack of realis-
tic benchmarks makes VM scheduling algorithms only evalu-
able in the laboratory environment (e.g., Sheng et al. [2022])
and cannot substantially benefit industrial applications.

In this paper, we propose a practical and efficient VM

https://bit.ly/vmagent-demo-video


scheduling platform called VMAgent to assist in developing
machine learning, especially DRL methods for VM schedul-
ing. It consists of three components: simulator, scheduler
and visualizer, as shown in Figure 1. Specifically, the simula-
tor, which is the core of the entire platform, needs to simulate
the practical VM scheduling scenarios and provide efficient
interaction interfaces for the scheduler. In order to construct a
simulator which substantially benefit industrial applications,
we collect realistic VM requests data from Huawei Cloud’s
actual operation scenarios and abstract three general realis-
tic scheduling scenarios (i.e., fading, recovering, and expand-
ing) from these real-world VM scheduling processes. Flexi-
ble configurations are further provided to make the simulator
compatible with more physical cloud computing architectures
and scenarios. For researchers in the DRL community to get
started quickly, we introduce the gym-like [Brockman et al.,
2016] interface style into the simulator implementation.

Researchers then need to instantiate the scheduler to inter-
act with the simulator, which is also pre-built various types of
scheduling baselines to speed up the algorithm design. These
baselines range from widely-used heuristic methods to well-
performed DRL methods, and we benchmark the baselines in
Table 1. Meanwhile, considering the data-hungry of the DRL
algorithm, the scheduler is designed in a multi-processing
scheme and can interact with multiple simulator instances in
parallel. The visualizer, as an auxiliary component of the
simulator and scheduler, facilitates researchers to conduct
in-depth analysis of the scheduling procedure (in uni-policy
mode) and comprehensively compare different scheduling al-
gorithms (in multi-policies mode).

Besides benefiting the scheduling community, VMAgent is
also a flexible playground for DRL. For example, more allo-
catable physical machines correspond to a larger state and ac-
tion space; unpredictable requests for resources release (i.e.,
the recovering scenario) will make the DRL algorithm face
a highly non-stationary environment; and an extensible phys-
ical machine pool (i.e., the expanding scenario) will guide
the algorithm design to the field of life-long DRL. Coinci-
dentally, these challenges are also three key issues of apply-
ing DRL to real-world problems. To sum up, VMAgent can
provide a powerful platform to explore the law and scope
of DRL for VM scheduling applications and investigates the
challenges for applying RL to real-world problems.

2 The VMAgent Platform

The VMAgent project1 is a VM scheduling platform for de-
signing DRL-based VM scheduling algorithms. In this sec-
tion, we will give a detailed introduction to the three compo-
nents of the VMAgent platform, the simulator, the scheduler,
and the visualizer. Before that, we will first illustrate how the
VMAgent platform models the VM scheduling procedure. Al-
though modeling this procedure belongs to the simulator and
scheduler design, it is singled out for explanation considering
that it is the cornerstone of the entire platform.

1https://github.com/mail-ecnu/VMAgent.

2.1 Scheduling Fundamentals
VMAgentmodels the practical VM scheduling based on phys-
ical system architectures and the open-source real-world VM
scheduling dataset, Huawei-East-12, from Huawei Cloud.
The Huawei-East-1 dataset was collected in the east china
region of Huawei Cloud for one month, which includes
241743 requests and 15 types requested virtual machines, and
relevant statistical analyses are shown in Figure 2.

(a) Lifetimes. (b) VM Proportions.

(c) Alive VMs. (d) Scheduled Resources.

Figure 2: Statistical analyses of Huawei-East-1 dataset. a) the
VM alive times varies while b) most VMs are relatively small. The
c) shows the number of VMs increases with different speeds while
d) shows the trend of scheduled CPU and memory.

We model practical VM scheduling as a finite number of
repetitions of the following four steps under DRL context,
which is shown in Figure 3. In each loop, for the cur-
rent request in the request sequence (constructed from the
Huawei-East-1 dataset), 1 the simulator preprocesses re-
quest information to obtain observations; 2 the scheduler
performs VM scheduling action accordingly; after the cur-
rent request is processed, 3 the simulator turns to process
the next request in the sequence; 4 the simulator calculates
the reward according to the scheduling result and the next
request’s information. The above loop will continue until
the stop condition is satisfied. Below we define some of the
terms in the above procedure in detail.
Observation. It is the combination of sorted cluster status
and the current request information. The cluster status in-
cludes the number of PMs within the cluster, the scheduled
resources, and architecture (e.g., double NUMA [Lameter,
2013]) of each PM. We sort the cluster status based on the
scheduled resources (CPU and memory) to make an efficient
representation. The current request information can be cate-
gorized into two types: allocation, which includes the feature
(e.g., the amount of CPU and memory) of resources, and re-
lease, which only includes the request ID in the sequence.
Action. The scheduled ID of PM (and NUMA in some tasks).
Reward. The cumulative number of successful scheduling.
Stop condition. When an allocation can not be satisfied (i.e.,
no PMs can satisfy required resources), the cluster is denoted
as not available, and the scheduling terminates.

2https://github.com/huaweicloud/VM-placement-dataset.

https://github.com/mail-ecnu/VMAgent
https://github.com/huaweicloud/VM-placement-dataset


The goal of VM scheduling or the scheduler is to increase
the cluster’s availability and gain more income from the re-
quests. The availability is measured by the number of sched-
uled requests, while the income is calculated based on sched-
uled VMs’ prices and alive duration.

Figure 3: The modeled practical scheduling procedure.

2.2 Simulator
To reflect pratical VM scheduling procedure, we abstract
three scenarios, i.e., recovering, fading and expansion, from
the Huawei-East-1 dataset in the simulator design.
Recovering. The recovering scenario considers both alloca-
tion and releasing requests, which is common in the public
cloud when the PM pool will not be expanded. The scheduled
resources are released from the cluster when a release request
comes. Due to the dynamic, unpredictable release requests,
the scheduler faces a high non-stationarity environment.
Fading. The fading scenario only allows allocation requests,
which is common in the dedicated cloud. When the number
of PMs is large, the curse of dimensionality raises.
Expansion. The expansion scenario considers that the PM
pool will be expanded if the remaining resources are lower
than a certain threshold, common in the public cloud. The
cluster will replenish PMs before scheduling is terminated.
This scenario leads to a life-long VM scheduling problem.

We utilize YAML [Ben-Kiki et al., 2001] to provide flex-
ible configurations to make the simulator compatible with
physical architecture. The configurations can be categorized
into two types: cluster and scene. The following example
shows the configuration of the expansion scenario.

cluster_args: env_args:
N: 100 allow_release: True
CPU: 40 growing_threshold: 0.8
MEM: 90 growing_nums: 20
double_numa: True

Besides the YAML configuration, the simulator follows
the gym-like interface and provides an efficient multi-process
sampling interface. This makes it an RL-friendly simulator.

2.3 Scheduler
Researchers need to instantiate the scheduler to interact with
the simulator, which is also pre-built various types of VM
scheduling baselines to speed up the algorithm design. It in-
cludes the popular heuristic online VM scheduling methods

Table 1: Benchmark for baseline schedulers. DRL methods obtain
better performances on both availability and incomes.

Metric/Algos SchedQ DQN A2C FF BF

Fading Availability 276.1± 1.18 275.1± 0.19 274.0± 1.40 270.6 270.6
Incomes 103.11± 0.83 102.43± 0.11 101.69± 0.98 99.2 99.2

Recovering Availability 393.4± 2.63 392.5± 1.59 392.1± 0.96 371.0 384.4
Incomes 211.87± 3.88 210.28± 1.87 209.88± 0.97 185.1 200.3

(i.e., first-fit and best-fit [Bays, 1977]) and many DRL meth-
ods (e.g., DQN [Mnih et al., 2015], A2C [Mnih et al., 2016],
SchedQ [Sheng et al., 2022]). We benchmark some of the
baselines in different scenarios with 5 PMs, and the results
are shown in Table 1, which illustrates the advantage of DRL.

2.4 Visualizer

Figure 4: Visualization of the cluster status on the system overview,
load heatmap, load trend and the PMs’ dynamics.

Figure 5: Visualization for comparison between best-fit and DQN,
which includes scheduling resulted heatmap and cluster overview at
each timestep.

The visualizer, as an auxiliary component of the simulator
and scheduler, facilitates researchers to conduct an in-depth
analysis of the scheduling procedure and comprehensively
compare different scheduling algorithms. Visualizer provides
two modes: uni-policy mode (Figures 4) and multi-policies
mode (Figure 5). Uni-policy mode visualizes the dynamic of
cluster status and the scheduler’s decisions when continually
handling requests. The multi-policies mode makes visualiza-
tion on comparisons among different schedulers.

We finally conclude that our paper proposes a practical and
efficient VM scheduling platform, VMAgent. It well supports
RL methods design in real-world VM scheduling scenarios.



Acknowledgements
This work was supported in part by the National
Key Research and Development Program of China (No.
2020AAA0107400), STCSM (No. 20DZ1100304 and
19ZR141420) and Shenzhen Science and Technology Pro-
gram (JCYJ20210324120011032).

References
Carter Bays. A comparison of next-fit, first-fit, and best-fit.

Communications of the ACM, 20(3):191–192, 1977.
Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi,

and Samy Bengio. Neural combinatorial optimization with
reinforcement learning. In ICLR, 2016.

Oren Ben-Kiki, Clark Evans, and Ingy döt Net. Yet another
markup language (yaml) 1.0, 2001.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym, 2016.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri
Adulyasak, and Louis-Martin Rousseau. Learning heuris-
tics for the TSP by policy gradient. In CPAIOR, pages 170–
181, 2018.

Lu Duan, Haoyuan Hu, Yu Qian, Yu Gong, Xiaodong Zhang,
Yinghui Xu, and Jiangwen Wei. A multi-task selected
learning approach for solving 3D flexible bin packing prob-
lem. In AAMAS, pages 1386–1394, 2019.

Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, et al. Protean: VM
allocation service at scale. In OSDI, pages 845–861, 2020.

Haoyuan Hu, Xiaodong Zhang, Xiaowei Yan, Longfei Wang,
and Yinghui Xu. Solving a new 3D bin packing problem
with deep reinforcement learning method. arXiv preprint
arXiv:1708.05930, 2017.

Christoph Lameter. NUMA (Non-Uniform Memory Access):
An overview. Queue, 11(7):40–51, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei
Rusu, Joel Veness, Marc Bellemare, Alex Graves, Martin
Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533,
2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In ICML, pages 1928–1937, 2016.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid
von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja,
Pengming Wang, Ravichandra Addanki, Tharindi Ha-
puarachchi, Thomas Keck, James Keeling, Pushmeet
Kohli, Ira Ktena, Yujia Li, Oriol Vinyals, and Yori Zwols.
Solving mixed integer programs using neural networks.
arXiv:2012.13349, 2020.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence V Sny-
der, and Martin Takáč. Reinforcement learning for solv-
ing the vehicle routing problem. In NeurIPS, pages 9861–
9871, 2018.

Junjie Sheng, Yiqiu Hu, Wenli Zhou, Lei Zhu, Bo Jin, Jun
Wang, and Xiangfeng Wang. Learning to schedule multi-
NUMA virtual machines via reinforcement learning. Pat-
tern Recognition, 121:108254, 2022.

Andreas Wolke, Boldbaatar Tsend-Ayush, Carl Pfeiffer, and
Martin Bichler. More than bin packing: Dynamic resource
allocation strategies in cloud data centers. Information Sys-
tems, 52:83–95, 2015.


	Introduction
	The VMAgent Platform
	Scheduling Fundamentals
	Simulator
	Scheduler
	Visualizer


