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Abstract. Existing MARL algorithms have low efficiency in many-agent
scenarios due to the complex dynamic interaction when agents growing
exponentially. Mean-field theory has been introduced to improve the scal-
ability where complex interactions are approximated by those between a
single agent and the mean effect from neighbors. However, only consid-
ering the averaged actions of neighborhood at last step and ignoring the
dynamic influence of neighbors leads to unstable training procedures and
sub-optimal solutions. In this paper, the Weighted Mean-Field Multi-
Agent Reinforcement Learning via Reward Attribution Decomposition
(MFRAD) framework is proposed by differentiating heterogeneous and
hysteresis neighbor effect with weighted mean-field approximation and
reward attribution decomposition. The multi-head attention is employed
to calculate the weights which formulate the weighted mean-field Q-
function. To further eliminate the impact of hysteresis information, re-
ward attribution decomposition is integrated to decompose weighted
mean-field Q-value, improving the interpretability of MFRAD and achiev-
ing fully decentralized execution without information exchanging. Two
novel regularization terms are also introduced to guarantee the consis-
tency of temporal relationship among agents and unambiguity of local
Q-value with no agents. Numerical experiments on many-agent scenarios
demonstrate the superior performance against existing baselines.

Keywords: Multi-Agent Reinforcement Learning · Weighted Mean-Field
Approximation · Reward Attribution Decomposition.

1 Introduction

In recent years, multi-agent reinforcement learning (MARL) has registered great
potential in multi-agent systems, showing extraordinary performance in vari-
ous scenarios, such as multi-player games [27], resource allocation [19,32], and
network routing [13,14]. When the number of agents increases, classic MARL
algorithms are far less effective than expectation due to the non-stationary is-
sue [15] that agents not only interact with the environment but also with other
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agents. Besides, the increasing action space resulting in the curse of dimension-
ality brings new challenges. Therefore, some efficient approaches [16,6] are pro-
posed recently to solve above problems, especially the investigation of centralized
training and decentralized execution (CTDE) framework [12,20,11,10].

However, many real-world scenarios [1,31] contain hundreds of agents cooper-
ating and struggling with each other, bringing about the more difficult learning
procedure due to the enormous action space and exponential dynamic interac-
tion. The CTDE framework can not directly adapt to such many-agent scenar-
ios due to the existence of centralized critic. [26] takes advantage of mean-field
theory to realize scalability, transferring the many-agent interaction into the in-
teractions between every ego agent and the approximated mean-field effect of
the overall population. It should be noted that the mean-field approximation
strongly relies on the introduction of the mean action of neighbors, which is di-
rectly averaged by all the neighbor actions, ignoring the different influence may
caused by different locations, types or any attribute of neighbors. Unfortunately,
most of derivative works [5,9,3] based on mean-field theory either focus on deter-
mining the accurate accessible neighbors or simply extend the same type agents
to multi-types. Though weighted information [2,18,25] has also been considered,
they still formulate the mean-field function with hysteresis information that same
as original mean-field MARL, i.e., generating the mean action from the last step.
The theoretical idea or the empirical results [4,18] indicate that, the miscalcula-
tion of the mean-field effect caused by equal treatment of neighbors and use of
hysteresis information may leads to the wrong direction of optimization, which
matches with the massive oscillations during training.

In order to eliminate the unexpected effect of mean action in mean-field
approximation, we first introduce attention mechanism, similar with existing
methods [2,25], to differentially process neighbors’ information. Then we decom-
pose the weighted local Q-value via reward attribution decomposition which is
inspired by [29], formulating the weighted mean-field approximation as a joint
optimization over an implicit reward assignment among the ego agent and its
neighbors. After decomposition, not only in the training phase, the ego agent
can better distinguish the impact of the neighbors’ hysteresis information, but
also the execution phase is now fully decentralized without any information ex-
changing, especially dropping the effect from hysteresis information utilization.
Moreover, it distinguishes from the value decomposition methods [22,17] owing
to the latter is decomposed from team perspective which only adapted in cooper-
ative settings, while the former from individual point of view under the guidance
of different reward assignment, improving the interpretability to some extent.

To this end, we proposed the Weighted Mean-Field MARL via Reward
Attribution Decomposition (MFRAD) framework by differentiating heteroge-
neous and hysteresis neighbor effect with weighted mean-field approximation
and reward attribution decomposition. Specifically, we first achieve weighted
mean-field approximation by calculating the weighted state-action embeddings
of neighbors nearby the ego agent. Then, in reward attribution decomposition,
considering the effect of the ego agent’s interaction with its neighbors caused by
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its own actions and neighbors’ actions, the pairwise local Q-function is decom-
posed as two terms: the SELF-term that only relies on the agent’s own state,
and the neighbor term that is related to the weighted mean-field effect of other
agents which combined with multi-head attention mechanism. Intuitively, the
relationship between agents maintains temporarily stable even if the character-
istics of the neighbor agents change at a certain moment. Thus we propose a
novel regularization term named temporal relationship regularization to main-
tain the temporary difference of attention weights between timesteps. Moreover,
decomposing pairwise local Q-function with a simple addition, the solution of
two terms might not be unique. Drawing the inspiration from previous work [29],
we introduce an extra regularization term to guarantee the unambiguity of ego
agent’s local Q-value with no neighbors. Main contributions are listed as fol-
lows: 1) We propose the weighted mean-field approximation that captures the
fine-grained neighbor information and employ multi-head mechanism to calculate
the dynamic mean-field effect; 2) The idea of reward attribution decomposition
is introduced to reduce the negative effect of antique signal from calculating the
delayed mean action of neighbors, transforming the Q-function of each agent
into summation of local Q-function and weighted mean-field Q-function that
related to neighbors from individual perspective; 3) Multiple many-agent exper-
iments on MAgent and CityFlow are conducted to verify the proposed MFRAD
algorithm can achieve higher return and stable performance in both cooperative
and competitive tasks, and has certain scalability in real-world scenarios where
cooperation and struggle coexist.

2 Related Work

Mean-field Games. Introducing mean-field theory into MARL has gained wide
attention recently, which approximates the complex interactions between agents
into the interaction between ego agent and the neighboring agent distribution
[7], eliminating the dimensional disaster. It also effectively alleviates exploration
noise caused by multiple agents so that each agent can efficiently make beneficial
local decisions. [26] firstly proposes a model-free scheme for learning the optimal
action based on mean-field theory. [4] relaxes the assumption on the neighbor
range in [26], establishing the mean-field effect of accessible agents which in a
predefined observation range or visible distribution. When it comes with more
complex game settings, [3] approximates the joint action of N agents to N mean
actions while [25] approximately estimates the inter-type and intra-type inter-
actions between agents without exact number. Also, weighted information [25]
and graph neural network with attention mechanism [8] has been introduced
to model the neighbor relationship, while existing works mainly focus on the
weighted action distribution to formulate the pairwise mean-field Q-function
directly.

Value Function Decomposition. The most straightforward way to train a
MARL task is to learn each agent’s Q-function independently[23], while it ignores
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the dynamic influence of other agents that leads to the non-stationary environ-
ment especially in many-agent scenarios. Value function decomposition(VFD)
methods, e.g., VDN[22], QMIX[17], QTRAN[21], adopt CTDE paradigm to
rewrite the joint Q-function as Qπ(s,a) = ϕ

(
s,Q1

(
o1, a1

)
, . . . , QN

(
oN , aN

))
where the formulation of ϕ differs in each method. Although these VFD meth-
ods successfully solve the non-stationary issue, none of them is well adapted to
many-agent scenarios where large-scale numbers of agent exist.

3 Preliminaries

3.1 Markov Decision Process and Markov Game

The Markov Game with N agents which generalizes from Markov Decision Pro-
cess is formalized by the tuple Γ ≜

(
S ,A 1, . . . ,A N , r1, . . . , rN , p, γ

)
, where

S represents the state space and A j denotes the actions of the agent j ∈
{1, . . . , N}. The reward function is rj : S × A 1 × · · · × A N → R. All agents
maximize their discounted sum of rewards with the discount factor γ ∈ [0, 1). p
is the transition probability S × A 1 × · · · × A N → Ω(S ) where Ω(S ) is the
collection of state space probability distributions. For agent j, the corresponding
policy is defined as πj : S → Ω

(
A j

)
and each agent is trying to maximize its re-

turn over the consideration of others’ behaviors, where Ω
(
A j

)
represents the set

of probability distributions on the agent’s j action space A j . The joint policy of
all agents can be denoted as π ≜

[
π1, . . . , πN

]
. Considering the initial state s, the

value function of agent j under the joint policy π is formulated as the expected
future cumulative discount reward: vjπ(s) =

∑∞
t=0γ

tEπ,p

[
rjt | s0 = s,π

]
. The

Q-function of agent j under the joint policy π can be formalized as: Qj
π(s,a) =

rj(s,a) + γEs′∼p

[
vjπ (s

′)
]
, where s′ represents the next state.

3.2 Mean-field Reinforcement Learning

Mean-field MARL approximates the complicated interactions in many-agent sce-
narios into the bilateral estimation of two agents where the second agent corre-
sponds to the mean effect of the overall population. The Q-function Qj(s,a) in
mean-field MARL will be decomposed by using only local bilateral interactions:

Qj(s,a) =
1

N j

∑
k∈N (j)

Qj
(
s, aj , ak

)
, (1)

where N (j) represents the sequence number set of agent j’s neighbors with size
N j = |N (j)|. After decomposing the Q-function through the bilateral estimation
of the agent and its neighbors, it dramatically reduces the interaction complexity
in the large-scale scenarios. So this decomposition converts the joint Q-function
into the mean field formulation Qj

MF

(
s, aj , āj

)
where the mean action āj is

calculated according to the neighboring agent set N (j). Considering the small
disturbance, ak is denoted as : ak = āj + δaj,k,where āj = 1

Nj

∑
k ̸=ja

k. The
Q-function is updated in a recurrent manner:

Qj
t+1

(
s, aj , āj

)
= (1− α)Qj

t

(
s, aj , āj

)
+ α

[
rj + γvjt (s

′)
]
, (2)
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where α is the learning rate and rj is the obtained reward. s and s′ represents
the old state and resulting state respectively. The value function vjt (s

′) for agent
j at time t is formulated as:

vjt (s
′) =

∑
ajπ

j
t

(
aj | s′, āj

)
Eāj(a−j)∼π−j

t

[
Qj

t

(
s′, aj , āj

)]
, (3)

with ājt =
1
Nj

(∑
k ̸=j a

k
t

)
, akt ∼ πk

(
· | st, ākt−1

)
, and

πj
t

(
ajt | st, ā

j
t−1

)
=

exp
(
−βQj

(
st, a

j
t , ā

j
t−1

))
∑

aj′
t ∈Aj exp

(
−βQj

(
st, a

j′

t , ā
j
t−1

)) , (4)

where β is the Boltzmann parameter and π denotes the Boltzmann policy .

4 Algorithm

In this section, we introduce the proposed MFRAD algorithm illustrated in Fig.1.
Considering the limitations of mean-field MARL, we firstly extend the existing
mean-field approximation to the form with weight information and give the
detailed mathematical derivation. Secondly, inspired by [29], we transform the
joint Q-function into the integration of ego agent’s individual Q-function and
weighted mean-field Q-function of its neighbors, which called reward attribution
decomposition, utilizing the multi-head attention to calculate the weights.

ADD

Concatenate

Attention 
 Head

Attention For Weighted Mean Field Approximation

Reward Attribution Decomposition

Embedding

MLP

MLP

MLP

MLP

Scaled Dot
Product

Softmax

Dot

Key Query

Fig. 1. Architecture of MFRAD. Each agent calculate its Qj
SELF based on state-action

embeddings which consists of local observation and action. Meanwhile, multi-head at-
tention module receives the state-action embeddings of ego agent’s neighbors as input,
calculating attention weights as mean-field weights to construct the weighted mean-
field effect Qj

NEI. Finally, these two items constitute the decentralized Qj .
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4.1 Weighted Mean-Field Approximation

Drawing inspiration from existing works [2,18], we rewrite the original mean-field
approximation formula (1) into a form with weight information

Qj(s,a) =
∑

k∈N (j)

wk
jQ

j
(
sj , aj , sk, ak

)
, (5)

where wk
j represents the weight of each neighbor’s effect on ego agent j, and

0 ≤ wk
j ≤ 1,

∑
k∈N (j) w

k
j = 1. N (j) represents the sequence number set of agent

j’s neighbors with size N j = |N (j)|. As for clarity, we denote ej ≜ ej
(
sj , aj

)
which performed with embedding operation, thus (5) can be reformulate as

Qj(s,a) =
∑

k∈N (j)

wk
jQ

j
(
ej , ek

)
. (6)

Similar as the deviation in mean-field approximation, the weighted mean-field
approximation is still based on the weighted average effect of the state-action
pair ēj from the adjacent agent set N (j). We represent the local state-action
information of each neighbor as the sum of weighted average effect ēj and a
small disturbance δej,k, that is, ek = ēj + δej,k, where ēj =

∑
k∈N (j) w

k
j e

k

can be interpreted as neighborhood state-action distribution. Then according
to Taylor’s theorem, if the bilateral weighted Q-function of agent k is twice-
differentiable, then (6) can be expanded as

Qj(s,a) =
∑

k∈N (j)

wk
jQ

j
(
ej , ek

)
=

∑
k∈N (j)

wk
j

[
Qj

(
ej , ēj

)
+

∇ējQ
j
(
ej , ēj

)
δej,k +

1

2
δej,k · ∇2

ēj,kQ
j
(
ej , ēj,k

)
δej,k︸ ︷︷ ︸

Rj

ej
(ek)

]
,

(7)

where the first term is merged as Qj
(
ej , ēj

)
=

∑
k∈N (j) w

k
jQ

j
(
ej , ēj

)
, and the

second term equals to zero since ēj =
∑

k∈N (j) w
k
j e

k. In addition, Rj
ej

(
ek
)

is the
Taylor polynomial’s remainder where ēj,k = ēj + ϵj,kδej,k, ϵj,k ∈ [0, 1], so (7) is
finally reduced to

Qj(s,a) ≈ Qj
(
ej , ēj

)
= Qj

sj , aj ,
∑

k∈N (j)

wk
j s

k,
∑

k∈N (j)

wk
j a

k

 . (8)

Therefore, based on the weighted mean effect, the bilateral interaction be-
tween agent j and its neighbor agent k is simplified as the local pairwise interac-
tion between the ego agent and the mean-field agent, and the latter is abstracted
from the weighted mean effect of neighborhood state-action information.

4.2 Reward Attribution Decomposition

Though weighted information is introduced, the another drawback of mean-
field MARL that the mean-field effect of neighbor is generated from obsolete
information, which is unreasonable to choose actions according to the generated
policy. Drawing inspiration from [29], we decompose the Q-value of ego agent
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into its own part and that of neighbor agent via reward assignment mechanism.
Therefore, we realize the decentralized execution without historical information
sharing among agents, alternatively, the weighted mean-field effect of neighbors is
dexterously converted into the centralized training process. The intuition of this
decomposition is that the effect of the ego agent’s interaction with its neighbors is
caused by two factors, that is, the action taken by the ego agent based on its local
observation and the actions taken by neighbors based on their local observations,
and all these actions are chosen under the guidance of reward assigning. We will
explain in more detail later why the proposed MFRAD is able to achieve fully
decentralization in execution. As a result, the weighted mean-field Q-value for
each agent can be effectively decomposed, which decoupled the description of
global information under the partially observed assumption. It also realizes high
scalability in many-agent scenarios from individual perspective, making up for
the limitation of mean-field MARL in calculating mean action of neighborhood
during the decentralized execution phase. Specifically, according to the weighted
mean-field approximation (8), we have

Qj(s,a) = Qj

sj , aj ,
∑

k∈N (j)

wk
j s

k,
∑

k∈N (j)

wk
j a

k


= E

 ∞∑
t=0

γtrj

sjt , a
j
t ,

∑
k∈N (j)

wk
j s

k
t ,

∑
k∈N (j)

wk
j a

k
t

∣∣∣∣s0 = s, a0 = a

 ,

(9)

followed with the principle of reward attribution decomposition that explained
in [29], agent acts according to a state not only because the reward to itself,
but also because it is more rewarding than other agents. Therefore, we split the
reward of an agent from the ego agent’s point of view, that is, the reward is not
only derived from itself, but also influenced by that of neighbors.

rj

sjt , a
j
t ,

∑
k∈N (j)

wk
j s

k
t ,

∑
k∈N (j)

wk
j a

k
t

 = rj
(
sjt , a

j
t

)
+ rj

 ∑
k∈N (j)

wk
j s

k
t ,

∑
k∈N (j)

wk
j a

k
t

 ,

(10)
then Qj(s,a) can be further decomposed

Qj(s,a) = E

[ ∞∑
t=0

γtrj
(
sjt , a

j
t

) ∣∣∣∣s0 = s, a0 = a

]

+ E

 ∞∑
t=0

γtrj

 ∑
k∈N (j)

wk
j s

k
t ,

∑
k∈N (j)

wk
j a

k
t

∣∣∣∣s0 = s, a0 = a


≈ Qj

SELF(s
j , aj) +Qj

NEI

(
{wk

j , s
k, ak}k∈N (j)

)
.

(11)

Finally, the weighted average Q-function is transformed into the summation
of the local Q-function QSELF of the ego agent and the neighbor agent Q-function
QNEI with weighted information.
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4.3 Network Architecture

The overall architecture of the proposed MFRAD is illustrated in Figure 1. As
discussed above, the local Q-function of each agent j consists of two parts: SELF-
Q network and NEI-Q network. For detail, on the one hand, SELF-Q network
parameterized by θjself is separated for calculating the Qj

SELF of each agent j
based on its local observation sj and action aj . Noted that for each agent j,
its local observation and action pair (sj , aj) is encoded as ej via a state-action
encoder3 before fed into SELF-Q network to reduce the noise redundancy of orig-
inal coarse information. On the other hand, the NEI-Q network parameterized by
θjnei employs the multi-head attention module (will be explained soon) to model
the weighted neighbour state-action distribution, which is further processed for
calculating the weighted effect Qj

NEI of neighbors.
Concretely, the multi-head attention module introduces the attention mech-

anism to calculate the weights in the weighted mean-field approximation. The
embedding vector ej is regarded as the query vector, while ek which contains
neighbour state-action information is regarded as the key vector. The mean-field
weights are then calculated by comparing the key vectors and query vector in
terms of their dot similarity, which is evaluated through a softmax function

wk
j ∝ exp

(
ej

(
sj , aj

)T
WT

keyWquerye
k
(
sk, ak

))
, (12)

and we denote the parameters of attention module (Wkey,Wquery) of each agent
j as θjatt.

Rather than the single-head attention, here we use multi-head attention
mechanism to comprehensively utilize all aspects of the information of the agent
from multiple angles and extract more abundant feature representation. Each at-
tention head corresponds to a separate set of weight parameters (Wm

key,W
m
query)

where m ∈ [M ] and M is the number of heads. For clarity, (Wm
key,W

m
query) is de-

noted as θj,matt and Θj
att := {θj,matt }Mm=1 refers to parameters of all attention heads.

The final weights are then obtained by averaging the attentions of multiple at-
tention heads. That is, the observation-action distribution of neighbors e−j is
calculated as follows

e−j =
1

M

M∑
m

∑
k

wk,m
j ek. (13)

The obtained e−j is then fed into the NEI-Q network, and the Q-value of neigh-
bors after the fusion of attention mechanism is calculated, which describes the
comprehensive effect of neighbors on the ego agent with better explanation and
representation. Finally, we perform the summation operation on Qj

SELF and Qj
NEI

to formulate the Qj(s,a).

4.4 Overall Optimization Objective

Intuitively, the interaction between agents is not a transient process, the relation-
ship between agents maintains temporarily stable even if the characteristics of
3 Without causing confusion, we incorporate the parameters of this encoder into θjself .



Weighted Mean-Field MARL via Reward Attribution Decomposition 9

the neighbor agent change at a certain moment. Therefore, the attention weight
distribution should also remain stable in a short period of time. We use KL di-
vergence to measure the difference of attention weights between timesteps as in
[8], in order to keep the consistency of the temporal relationship. Therefore, the
regularization term about temporal relationship, called temporal relationship
regularization (TRR), is added to the loss function

Ω(θjself , Θ
j
att; s

l, al, sl,
′
, al,

′
) =

1

M

M∑
m=1

DKL

[
wk,m

j (sl, al; θjself , θ
j,m
att )

∥∥wk,m
j (sl,

′
, al,

′
; θjself , θ

j,m
att )

]
,

(14)
where l := N (j)∪j, (sl, al) and (sl,

′
, al,

′
) are state-action pairs at two consecutive

timesteps, DKL[·∥·] denotes the KL-divergence operator.
Moreover, revisiting (11), with a simple addition, the solution of Qj

SELF and
Qj

NEI might not be unique. Indeed, we might add any constant to Qj
SELF and sub-

tract that constant from Qj
NEI to yield the same local Q-value Qj . Drawing the

inspiration from previous work [29], we introduce an extra regularization term,
Qj

NEI. Intuitively, we hope that during the training process, Qj
NEI can gradually

converge to 0, so that there is a unique optimal solution for two terms in (11).
From another perspective, the introduction of this regularization term is also
similar to the teacher-student framework in transfer learning [28]. As learning
progresses, Qj

NEI gradually distills knowledge into Qj
SELF. This enables the ego

agent to adaptively process hysteresis information from neighbors. Further, this
also enables MFRAD to only make decisions based on Qj

SELF during the execu-
tion phase, without the need to communicate with the neighbors to calculate the
average actions of them, enabling fully decentralized execution. Compared with
the existing work based on mean-field theory, MFRAD has better scalability.
We also observe that with NEI objective, training is much stabilized in following
numerical experiments. By the way, since the occurance that no agents exists
in the neighborhood may create ambiguity, this regularization term also making
the guarantee that argmaxaj Qj = argmaxaj Qi

SELF.
In order to make MFRAD have faster convergence speed and better scalabil-

ity, the parameters of all agents are shared. Therefore we denote the parameters
of SELF-Q network, NEI-Q network, and multi-head attention module of any
agent as θself , θnei and Θatt respectively. Finally, the overall optimization objec-
tive for each agent j that integrates the regularization terms is shown as follows:

L(θself , θnei, Θatt) =
1

N

N∑
j=1

Es,a,s′,a′

[(
yj −

(
QSELF

θself

(
sj , aj

)
+QNEI

θnei

(
sk, ak

)))2︸ ︷︷ ︸
DQN Objective

+ λ1

(
QNEI

θnei

(
sj , aj

))2︸ ︷︷ ︸
NEI Objective

+ λ2Ω(θself , Θatt; s
l, al, sl,

′
, al,

′
)
]

︸ ︷︷ ︸
TRR Objective

,

(15)
where k ∈ N (j), l := N (j)∪j and λ1 and λ2 represent the relative importance of
two regularization terms against the optimization direction of original Q-function
respectively.
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5 Experiments

We consider many-agent scenarios in this section and evaluate the performance
of the proposed MFRAD framework. Firstly, three different tasks will be dis-
cussed based on MAgent [30] platform, including a competitive task (i.e., Gather
Game), a cooperative task (i.e., Predator-prey Game) and a mixed cooperative-
competitive task(i.e., Battle Game). Additionally, more detailed analysis on the
Battle Game will be conducted to verify the effects of attention mechanism and
two regularization terms. Moreover, we choose a real-world task on traffic flow
to demonstrate the scalability of MFRAD which outperforms both existing rule-
based and value function decomposition methods.

5.1 Results and Analysis
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0 250 500 750 1000 1250 1500 1750 2000
Training Episodes

150

200

250

300

350

400

To
ta

l R
ew

ar
ds

 o
f A

ge
nt

 6
4

Learning Graph (Battle)

DQN
MFQ
MFRAD

0 250 500 750 1000 1250 1500 1750 2000
Training Episodes

150

200

250

300

350

400

To
ta

l R
ew

ar
ds

 o
f A

ge
nt

 6
4

Learning Graph (Battle)

DQN
MFQ
MFRAD

0 250 500 750 1000 1250 1500 1750 2000
Training Episodes

150

200

250

300

350

400

To
ta

l R
ew

ar
ds

 o
f A

ge
nt

 6
4

Learning Graph (Battle)

DQN
MFQ
MFRAD

(c) Battle Game

Fig. 2. In all the learning graphs of three MAgent games with different agent numbers,
MFRAD shows the best performance.
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Experiments on Gather Game. In this scenario, agents compete for limited
food resources as much as possible and can kill other agents to maximize their
own survival time. The average total rewards with a standard deviation of 20
experiments for each algorithm is proposed in Fig. 2(a) where the agent number
scales. MFRAD consistently outperforms with higher total reward. It is similar
to other algorithms when in small scale, while gradually has faster convergence
speed than MFQ and DQN nearly 100 episodes though starts with relatively
slow growth rate.
Experiments on Predator-prey Game. Predator-prey Game is a fully co-
operative task where the predators cooperate to capture as many preys as pos-
sible. As shown in Fig. 2(b), MFRAD estimates the influence of other agents
accurately through the reward attribution mechanism when number of agent
increasing. However, MFQ is inferior to MFRAD and DQN in terms of con-
vergence speed and total reward, related to approximating the mean-field effect
among indiscriminate neighbors. In addition, we visualize the pursuit process
in Fig. 3(a) and find that MFRAD predator cooperate to capture alone rather
than continue to chase preys that have been observed and chased by others.
Then, we record the pursuing results of different methods which fight with each
other for 200 episodes in Fig. 3(b). Obviously, MFRAD with weighted neighbor
information always defeats other methods.

(a)
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Results of Predator-prey Trained Models
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vs AC
vs MFQ
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(b)

Fig. 3. Results in testing phases. (a)In the Predator-prey Game, each agent cooperate
to catch preys as much as possible. (b)Win rate among MFRAD and other baselines.

Experiments on Battle Game. The learning graph of Battle Game in which
red army of 64 agents fight with the similar blue army is shown in Fig. 2(c).
Since only the total reward corresponding to the red army is recorded when it
is higher than that of the blue army, the timestep of each record in each round
cannot be aligned synchronously. Therefore, calculating the mean and standard
deviation of the total reward lacks physical meaning and cannot reflect the ac-
tual performance. We randomly select 3 results from 50 experiments to show
the robustness of each algorithm to different random seeds. Although the con-
vergence speed of MFRAD in the initial stage is slightly slower, it outperforms
MFQ and DQN with higher cumulative reward and minor variance after con-
vergence, showing the stable performance in multiple trials. This phenomenon
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proves that the introduction of weighted mean-field effect after decomposition
by reward has a significant impact on the stability of the training process.

In addition, the average individual reward in 2000 episodes and number of
opponents killed by each algorithm are shown in Table. 1. Noted that we add
MFAC and AC algorithm based on actor-critic architecture to enrich compari-
son information, however, MFRAD performs significantly better than AC-family
methods. Besides, Multi-head attention mechanism plays an significant role in

Method Agent36 vs 36 Agent 64 vs 64 Agent 196 vs 196 Agent 324 vs 324
Reward Kill Reward Kill Reward Kill Reward Kill

DQN 0.13 35.31 0.18 62.9 0.09 193.43 0.08 316.99
AC 0.14 24.19 0.12 43.94 0.11 149.1 0.07 247.27

MFQ 0.14 35.21 0.12 62.92 0.09 193.3 0.08 315.32
MFAC 0.15 14.31 0.06 44.21 0.11 153.59 0.08 232.13

MFRAD 0.14 36.47 0.19 63.3 0.12 194.97 0.09 316.91
Table 1. Mean agent reward and number of opponents killed in different scales.

describing how important effect the neighbors make on the ego agent. From
the ablation results in Table. 2, the proposed MFRAD benefits from multi-head
attention to enrich the neighborhood information, proving the benefit of approx-
imating weighted mean-field effect of neighbors. Thus, MFRAD converges to a
higher total reward and remains the stable value than other algorithms.

Metric Method
w/o attention single-head attention multi-head attention

Training
total reward 290.47 298.13 302.62

individual reward 0.12 0.18 0.19
kill number 58.4 62.9 63.3

Testing total reward 216.1 239.74 243.13
kill number 39.0 45.2 48.9

Table 2. Impact of Attention Mechanism.Mean reward and number of opponents killed
is evaluated on both training and testing phases to show the influence of attention.

We also study the importance of NEI Loss and TRR loss by removing it from
MFRAD in scenarios where both army contains 196 agents, as shown in Table. 3.
Using these two regularization terms boosts the performance and stabilizes the
training process, consistent with the proposed reward attribution decomposition.

Experiments on Traffic Flow Control. In order to investigate the scalability
of MFRAD to more complex real-world task, we choose the traffic flow control
task and experiment on the large-scale traffic flow platform named CityFlow.
Following existing studies, we model each intersection as an RL agent and realize
the communication by sharing information among agents. It is a typical mixed
cooperative-competitive scenario.

We compare our model with the following two categories of methods: rule-
based method(i.e., Max-Pressure[24]) and RL methods (i.e., IQL, QMIX, VDN)
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Method NEI objective TRR objective Battle Scenario Metrics
Mean Reward Kill-Death Ratio

OL 887.92 1.88
OL-NEI

√
925.81 2.13

OL-NEI-TRR
√ √

928.49 2.26
Table 3. Impact of regularization term of loss function. Mean total reward and kill-
death ratio is evaluated to show that MFRAD with refactoring loss is better at killing
opponents and protecting themselves.

based on value function decomposition. The average travel time, which calcu-
lates the average travel time of all the vehicles spent from waiting in the queue
and leaving the intersection, is chosen to evaluate the performance of different
methods. MFRAD achieves consistent performance improvements on both syn-
thetic data and real-world data, it costs less travel time not only compared with
rule-based method but also RL(VFD) methods.

Model Arterial 1×6 Grid 6×6bi Grid 6×6uni NewYork 16×3 Hangzhou 4×4

Max-Pressure 122.98 204.72 186.06 405.69 431.53
IQL 143.95 269.18 244.39 254.93 472.38

QMIX 110.27 542.63 678.27 226.15 562.39
VDN 131.53 468.94 630.82 198.24 358.73

MFRAD 72.98 171.51 168.25 183.82 310.07
Table 4. Performance on synthetic data and real-world data w.r.t average travel time

Ablation study is conducted to further analyze the effect of attention mecha-
nism. Temporal distribution of attention in Grid 6×6 roadnet learned by MFRAD
is demonstrated in Fig. 4. Similarly as traffic jam, flow of Inter I0 changes greatly
that flow from Inter I4 to Inter I0 decreases while increases from Inter I3 to Inter
I0. As shown in Fig. 4(b) the score of SELF-attention occupies the largest blue
area while that of I4 and I2 decreases and I3 and I1 increases, indicating that the
attention scores match with the real traffic condition. Thus, MFRAD is verified
to capable of approximating accurate weighted mean-field neighbor effect.
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Fig. 4. Temporal distribution of attention score when facing with changeable traffic
flow.(a) Roadnet of Inter I0. (b) Temporal distribution of attention score of Inter I0.
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6 Conclusion

In this paper, we develop a weighted mean-field multi-agent reinforcement learn-
ing algorithm via reward attribution decomposition, which incorporates weighted
information of neighbors with attention mechanism to capture the dynamic influ-
ence of others. Considering the negative effect of hysteresis information, reward
attribution decomposition is integrated to decompose the pairwise mean-field Q-
function as SELF-term and neighbor term which represents the local effect and
mean-field effect of neighbors respectively, realizing the fully decentralized exe-
cution without any information exchanging. Experiments in various many-agent
scenarios demonstrate that MFRAD boosts the performance and stabilizes the
training process and also has great scalability to real-world tasks.

Acknowledgment. This work was supported in part by the National Key Re-
search and Development Program of China (No. 2020AAA0107400), STCSM
(No. 18DZ2271000 and 19ZR141420), NSFC (No. 12071145) and the Funda-
mental Research Funds for the Central Universities.

References

1. Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K., Li, Z.: Toward
a thousand lights: Decentralized deep reinforcement learning for large-scale traffic
signal control. AAAI 34(04), 3414–3421 (2020)

2. Fang, B., Wu, B., Wang, Z., Wang, H.: Large-scale multi-agent reinforcement learn-
ing based on weighted mean field. In: ICCSSP. pp. 309–316. Springer (2020)

3. Ganapathi Subramanian, S., Poupart, P., Taylor, M.E., Hegde, N.: Multi type
mean field reinforcement learning. In: AAMAS (2020)

4. Ganapathi Subramanian, S., Taylor, M.E., Crowley, M., Poupart, P.: Partially
observable mean field reinforcement learning. In: AAMAS (2021)

5. Guo, X., Hu, A., Xu, R., Zhang, J.: Learning mean-field games. In: NeurIPS (2019)
6. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using

deep reinforcement learning. In: AAMAS (2017)
7. Jeong, S.H., Kang, A.R., Kim, H.K.: Analysis of game bot’s behavioral charac-

teristics in social interaction networks of mmorpg. ACM SIGCOMM Computer
Communication Review 45(4), 99–100 (2015)

8. Jiang, J., Dun, C., Huang, T., Lu, Z.: Graph convolutional reinforcement learning.
In: ICLR (2020)

9. Li, M., Qin, Z., Jiao, Y., Yang, Y., Wang, J., Wang, C., Wu, G., Ye, J.: Efficient
ridesharing order dispatching with mean field multi-agent reinforcement learning.
In: WWW (2019)

10. Li, W., Wang, X., Jin, B., Sheng, J., Hua, Y., Zha, H.: Structured diversification
emergence via reinforced organization control and hierarchical consensus learning.
In: AAMAS (2021)

11. Li, W., Wang, X., Jin, B., Sheng, J., Zha, H.: Dealing with non-stationarity in
MARL via trust region decomposition. In: ICLR (2022)

12. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: NeurIPS (2017)



Weighted Mean-Field MARL via Reward Attribution Decomposition 15

13. Mao, H., Liu, W., Hao, J., Luo, J., Li, D., Zhang, Z., Wang, J., Xiao, Z.: Neigh-
borhood cognition consistent multi-agent reinforcement learning. In: AAAI (2020)

14. Mao, H., Zhang, Z., Xiao, Z., Gong, Z., Ni, Y.: Learning multi-agent communication
with double attentional deep reinforcement learning. AAMAS 34(1), 1–34 (2020)

15. Matignon, L., Laurent, G.j., Le fort piat, N.: Review: Independent reinforcement
learners in cooperative markov games: A survey regarding coordination problems.
Knowl. Eng. Rev. 27(1), 1–31 (2012)

16. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., et al.: Human-level control through
deep reinforcement learning. Nature 518(7540), 529–533 (2015)

17. Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.:
Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In: ICML (2018)

18. Ren, W.: Represented value function approach for large scale multi agent reinforce-
ment learning. Arxiv (2020)

19. Sheng, J., Hu, Y., Zhou, W., Zhu, L., Jin, B., Wang, J., Wang, X.: Learning to
schedule multi-numa virtual machines via reinforcement learning. Pattern Recog-
nition 121, 108254 (2022)

20. Sheng, J., Wang, X., Jin, B., Yan, J., Li, W., Chang, T.H., Wang, J., Zha, H.:
Learning structured communication for MARL. ArXiv (2020)

21. Son, K., Kim, D., Kang, W.J., Hostallero, D.E., Yi, Y.: Qtran: Learning to factorize
with transformation for cooperative multi-agent reinforcement learning. In: ICML
(2019)

22. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V., Jaderberg,
M., Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K., et al.: Value-decomposition
networks for cooperative multi-agent learning based on team reward. In: AAMAS
(2018)

23. Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents.
In: ICML (1993)

24. Varaiya, P.: Max pressure control of a network of signalized intersections. Trans-
portation Research Part C: Emerging Technologies 36, 177–195 (2013)

25. Yang, F., Vereshchaka, A., Chen, C., Dong, W.: Bayesian multi-type mean field
multi-agent imitation learning. In: NeurIPS (2020)

26. Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., Wang, J.: Mean field multi-agent
reinforcement learning. In: ICML (2018)

27. Ye, D., Chen, G., Zhang, W., Chen, S., Yuan, B., Liu, B., Chen, J., Liu, Z., Qiu, F.,
Yu, H., Yin, Y., Shi, B., Wang, L., Shi, T., Fu, Q., Yang, W., Huang, L., Liu, W.:
Towards playing full MOBA games with deep reinforcement learning. In: NeurIPS
(2020)

28. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning. In: CVPR (2017)

29. Zhang, T., Xu, H., Wang, X., Wu, Y., Keutzer, K., Gonzalez, J.E., Tian, Y.: Multi-
agent collaboration via reward attribution decomposition. Arxiv (2020)

30. Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang, J., Yu, Y.: Magent: A
many-agent reinforcement learning platform for artificial collective intelligence. In:
AAAI (2018)

31. Zhou, M., Jin, J., Zhang, W., Qin, Z., Jiao, Y., Wang, C., Wu, G., Yu, Y., Ye, J.:
Multi-agent reinforcement learning for order-dispatching via order-vehicle distri-
bution matching. In: CIKM. pp. 2645–2653 (2019)

32. Zimmer, M., Glanois, C., Siddique, U., Weng, P.: Learning fair policies in decen-
tralized cooperative multi-agent reinforcement learning. In: ICML (2021)


	Weighted Mean-Field Multi-Agent Reinforcement Learning via Reward Attribution Decomposition

